000839986 001__ 839986
000839986 005__ 20220930130135.0
000839986 0247_ $$2doi$$a10.1109/TMI.2017.2771504
000839986 0247_ $$2ISSN$$a0278-0062
000839986 0247_ $$2ISSN$$a1558-0062
000839986 0247_ $$2ISSN$$a1558-254X
000839986 0247_ $$2pmid$$apmid:29408790
000839986 0247_ $$2WOS$$aWOS:000424467000027
000839986 037__ $$aFZJ-2017-07556
000839986 041__ $$aEnglish
000839986 082__ $$a610
000839986 1001_ $$0P:(DE-Juel1)162442$$aZimmermann, Markus$$b0$$ufzj
000839986 245__ $$aAccelerated parameter mapping of multiple-echo gradient-echo data using model-based iterative reconstruction
000839986 260__ $$aNew York, NY$$bInstitute of Electrical and Electronics Engineers,$$c2018
000839986 3367_ $$2DRIVER$$aarticle
000839986 3367_ $$2DataCite$$aOutput Types/Journal article
000839986 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1517576352_13744
000839986 3367_ $$2BibTeX$$aARTICLE
000839986 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000839986 3367_ $$00$$2EndNote$$aJournal Article
000839986 520__ $$aA new reconstruction method, coined MIRAGE, is presented for accurate, fast, and robust parameter mapping of multiple-echo gradient-echo imaging; the basis sequence of novel quantitative MRI techniques such as water content and susceptibility mapping. Assuming that the temporal signal can be modeled as a sum of damped complex exponentials, MIRAGE performs model-based reconstruction of undersampled data by minimizing the rank of local Hankel matrices. It further incorporates multi-channel information and spatial prior knowledge. Finally, the parameter maps are estimated using nonlinear regression. Simulations and retrospective undersampling of phantom and in vivo data affirm robustness, e.g., to strong inhomogeneity of the static magnetic field and partial volume effects. MIRAGE is compared to a state of the art compressed sensing method, L1-ESPIRiT. Parameter maps estimated from reconstructed data using MIRAGE are shown to be accurate, with the mean absolute error reduced by up to 50 percent for in vivo results. The proposed method has the potential to improve the diagnostic utility of quantitative imaging techniques that rely on multipleecho gradient-echo data.
000839986 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000839986 588__ $$aDataset connected to CrossRef
000839986 7001_ $$0P:(DE-Juel1)140186$$aAbbas, Zaheer$$b1$$ufzj
000839986 7001_ $$0P:(DE-Juel1)164430$$aDzieciol, Krzysztof$$b2$$ufzj
000839986 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b3$$eCorresponding author$$ufzj
000839986 773__ $$0PERI:(DE-600)2068206-2$$a10.1109/TMI.2017.2771504$$gp. 1 - 1$$n2$$p626 - 637$$tIEEE transactions on medical imaging$$v37$$x1558-254X$$y2018
000839986 8564_ $$uhttps://juser.fz-juelich.de/record/839986/files/08101505.pdf$$yRestricted
000839986 8564_ $$uhttps://juser.fz-juelich.de/record/839986/files/08101505.gif?subformat=icon$$xicon$$yRestricted
000839986 8564_ $$uhttps://juser.fz-juelich.de/record/839986/files/08101505.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000839986 8564_ $$uhttps://juser.fz-juelich.de/record/839986/files/08101505.jpg?subformat=icon-180$$xicon-180$$yRestricted
000839986 8564_ $$uhttps://juser.fz-juelich.de/record/839986/files/08101505.jpg?subformat=icon-640$$xicon-640$$yRestricted
000839986 8564_ $$uhttps://juser.fz-juelich.de/record/839986/files/08101505.pdf?subformat=pdfa$$xpdfa$$yRestricted
000839986 8767_ $$81-10752511851$$92017-11-21$$d2017-11-21$$eOther$$jZahlung erfolgt$$lKK: Barbers$$zUSD 1000,-, KK-Info per Fax gesendet
000839986 909CO $$ooai:juser.fz-juelich.de:839986$$pOpenAPC$$pVDB$$popenCost
000839986 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000839986 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T MED IMAGING : 2015
000839986 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000839986 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000839986 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000839986 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000839986 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000839986 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000839986 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000839986 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000839986 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000839986 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000839986 9141_ $$y2018
000839986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162442$$aForschungszentrum Jülich$$b0$$kFZJ
000839986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140186$$aForschungszentrum Jülich$$b1$$kFZJ
000839986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164430$$aForschungszentrum Jülich$$b2$$kFZJ
000839986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000839986 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000839986 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000839986 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000839986 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000839986 980__ $$ajournal
000839986 980__ $$aVDB
000839986 980__ $$aI:(DE-Juel1)INM-4-20090406
000839986 980__ $$aI:(DE-Juel1)INM-11-20170113
000839986 980__ $$aI:(DE-82)080010_20140620
000839986 980__ $$aAPC
000839986 980__ $$aUNRESTRICTED
000839986 9801_ $$aAPC