Hauptseite > Publikationsdatenbank > Accelerated parameter mapping of multiple-echo gradient-echo data using model-based iterative reconstruction > print |
001 | 839986 | ||
005 | 20220930130135.0 | ||
024 | 7 | _ | |a 10.1109/TMI.2017.2771504 |2 doi |
024 | 7 | _ | |a 0278-0062 |2 ISSN |
024 | 7 | _ | |a 1558-0062 |2 ISSN |
024 | 7 | _ | |a 1558-254X |2 ISSN |
024 | 7 | _ | |a pmid:29408790 |2 pmid |
024 | 7 | _ | |a WOS:000424467000027 |2 WOS |
037 | _ | _ | |a FZJ-2017-07556 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |0 P:(DE-Juel1)162442 |a Zimmermann, Markus |b 0 |u fzj |
245 | _ | _ | |a Accelerated parameter mapping of multiple-echo gradient-echo data using model-based iterative reconstruction |
260 | _ | _ | |a New York, NY |b Institute of Electrical and Electronics Engineers, |c 2018 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1517576352_13744 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a A new reconstruction method, coined MIRAGE, is presented for accurate, fast, and robust parameter mapping of multiple-echo gradient-echo imaging; the basis sequence of novel quantitative MRI techniques such as water content and susceptibility mapping. Assuming that the temporal signal can be modeled as a sum of damped complex exponentials, MIRAGE performs model-based reconstruction of undersampled data by minimizing the rank of local Hankel matrices. It further incorporates multi-channel information and spatial prior knowledge. Finally, the parameter maps are estimated using nonlinear regression. Simulations and retrospective undersampling of phantom and in vivo data affirm robustness, e.g., to strong inhomogeneity of the static magnetic field and partial volume effects. MIRAGE is compared to a state of the art compressed sensing method, L1-ESPIRiT. Parameter maps estimated from reconstructed data using MIRAGE are shown to be accurate, with the mean absolute error reduced by up to 50 percent for in vivo results. The proposed method has the potential to improve the diagnostic utility of quantitative imaging techniques that rely on multipleecho gradient-echo data. |
536 | _ | _ | |0 G:(DE-HGF)POF3-573 |a 573 - Neuroimaging (POF3-573) |c POF3-573 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |0 P:(DE-Juel1)140186 |a Abbas, Zaheer |b 1 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)164430 |a Dzieciol, Krzysztof |b 2 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)131794 |a Shah, N. J. |b 3 |e Corresponding author |u fzj |
773 | _ | _ | |0 PERI:(DE-600)2068206-2 |a 10.1109/TMI.2017.2771504 |g p. 1 - 1 |n 2 |p 626 - 637 |t IEEE transactions on medical imaging |v 37 |x 1558-254X |y 2018 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/839986/files/08101505.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/839986/files/08101505.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/839986/files/08101505.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/839986/files/08101505.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/839986/files/08101505.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/839986/files/08101505.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:839986 |p VDB |p OpenAPC |p openCost |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)162442 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)140186 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)164430 |a Forschungszentrum Jülich |b 2 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)131794 |a Forschungszentrum Jülich |b 3 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-573 |1 G:(DE-HGF)POF3-570 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Decoding the Human Brain |v Neuroimaging |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b IEEE T MED IMAGING : 2015 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)1110 |2 StatID |a DBCoverage |b Current Contents - Clinical Medicine |
915 | _ | _ | |0 StatID:(DE-HGF)1160 |2 StatID |a DBCoverage |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-11-20170113 |k INM-11 |l Jara-Institut Quantum Information |x 1 |
920 | 1 | _ | |0 I:(DE-82)080010_20140620 |k JARA-BRAIN |l JARA-BRAIN |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-11-20170113 |
980 | _ | _ | |a I:(DE-82)080010_20140620 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|