000008400 001__ 8400 000008400 005__ 20200402205800.0 000008400 0247_ $$2pmid$$apmid:19798668 000008400 0247_ $$2pmc$$apmc:PMC3076061 000008400 0247_ $$2DOI$$a10.1002/pmic.200900259 000008400 0247_ $$2WOS$$aWOS:000273393900006 000008400 0247_ $$2ISSN$$a1615-9861 000008400 0247_ $$2altmetric$$aaltmetric:6070985 000008400 037__ $$aPreJuSER-8400 000008400 041__ $$aeng 000008400 082__ $$a540 000008400 084__ $$2WoS$$aBiochemical Research Methods 000008400 084__ $$2WoS$$aBiochemistry & Molecular Biology 000008400 1001_ $$0P:(DE-HGF)0$$aQi, Y.$$b0 000008400 245__ $$aSystematic prediction of human membrane receptor interactions 000008400 260__ $$aWeinheim$$bWiley VCH$$c2009 000008400 300__ $$a5243 - 5255 000008400 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000008400 3367_ $$2DataCite$$aOutput Types/Journal article 000008400 3367_ $$00$$2EndNote$$aJournal Article 000008400 3367_ $$2BibTeX$$aARTICLE 000008400 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000008400 3367_ $$2DRIVER$$aarticle 000008400 440_0 $$010401$$aProteomics$$v9$$x1615-9853$$y23 000008400 500__ $$aThis work was supported in part by National Science Foundation Grants ITR 0225656, CAREER 0448453 and CAREER CC044917, National Institutes of Health Grants NLM108730, R01 CA098372 and AI060422 and the Sofya Kovalvskaya Award (to J. K. S.) from the Humboldt Foundation. 000008400 520__ $$aMembrane receptor-activated signal transduction pathways are integral to cellular functions and disease mechanisms in humans. Identification of the full set of proteins interacting with membrane receptors by high-throughput experimental means is difficult because methods to directly identify protein interactions are largely not applicable to membrane proteins. Unlike prior approaches that attempted to predict the global human interactome, we used a computational strategy that only focused on discovering the interacting partners of human membrane receptors leading to improved results for these proteins. We predict specific interactions based on statistical integration of biological data containing highly informative direct and indirect evidences together with feedback from experts. The predicted membrane receptor interactome provides a system-wide view, and generates new biological hypotheses regarding interactions between membrane receptors and other proteins. We have experimentally validated a number of these interactions. The results suggest that a framework of systematically integrating computational predictions, global analyses, biological experimentation and expert feedback is a feasible strategy to study the human membrane receptor interactome. 000008400 536__ $$0G:(DE-Juel1)FUEK443$$2G:(DE-HGF)$$aProgramm Biosoft$$cN03$$x0 000008400 588__ $$aDataset connected to Web of Science, Pubmed 000008400 65320 $$2Author$$aData integration 000008400 65320 $$2Author$$aMembrane proteins 000008400 65320 $$2Author$$aProtein-protein interaction network 000008400 65320 $$2Author$$aReceptor interactome 000008400 65320 $$2Author$$aReceptor crosstalk 000008400 65320 $$2Author$$aSignal transcluction 000008400 65320 $$2Author$$aSystems biology 000008400 650_2 $$2MeSH$$aComputational Biology: methods 000008400 650_2 $$2MeSH$$aHumans 000008400 650_2 $$2MeSH$$aProtein Interaction Mapping: methods 000008400 650_2 $$2MeSH$$aProteome: analysis 000008400 650_2 $$2MeSH$$aProteome: metabolism 000008400 650_2 $$2MeSH$$aProteomics: methods 000008400 650_2 $$2MeSH$$aReceptor, Epidermal Growth Factor: analysis 000008400 650_2 $$2MeSH$$aReceptor, Epidermal Growth Factor: metabolism 000008400 650_2 $$2MeSH$$aReceptors, Cell Surface: analysis 000008400 650_2 $$2MeSH$$aReceptors, Cell Surface: metabolism 000008400 650_2 $$2MeSH$$aSignal Transduction 000008400 650_2 $$2MeSH$$aSystems Biology: methods 000008400 650_7 $$00$$2NLM Chemicals$$aProteome 000008400 650_7 $$00$$2NLM Chemicals$$aReceptors, Cell Surface 000008400 650_7 $$0EC 2.7.10.1$$2NLM Chemicals$$aEGFR protein, human 000008400 650_7 $$0EC 2.7.10.1$$2NLM Chemicals$$aReceptor, Epidermal Growth Factor 000008400 650_7 $$2WoSType$$aJ 000008400 7001_ $$0P:(DE-HGF)0$$aDhiman, H.K.$$b1 000008400 7001_ $$0P:(DE-HGF)0$$aBhola, N.E.$$b2 000008400 7001_ $$0P:(DE-HGF)0$$aBudyak, I.$$b3 000008400 7001_ $$0P:(DE-HGF)0$$aKar, S.$$b4 000008400 7001_ $$0P:(DE-HGF)0$$aMan, D.$$b5 000008400 7001_ $$0P:(DE-HGF)0$$aDutta, A.$$b6 000008400 7001_ $$0P:(DE-HGF)0$$aTirupula, K.$$b7 000008400 7001_ $$0P:(DE-HGF)0$$aCarr, B.$$b8 000008400 7001_ $$0P:(DE-HGF)0$$aGrandis, J.R.$$b9 000008400 7001_ $$0P:(DE-HGF)0$$aBar-Joseph, Z.$$b10 000008400 7001_ $$0P:(DE-Juel1)VDB44599$$aKlein-Seetharaman, J.$$b11$$uFZJ 000008400 773__ $$0PERI:(DE-600)2037674-1$$a10.1002/pmic.200900259$$gVol. 9, p. 5243 - 5255$$p5243 - 5255$$q9<5243 - 5255$$tProteomics$$v9$$x1615-9853$$y2009 000008400 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076061 000008400 909CO $$ooai:juser.fz-juelich.de:8400$$pVDB 000008400 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000008400 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000008400 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000008400 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000008400 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000008400 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000008400 9141_ $$y2009 000008400 9131_ $$0G:(DE-Juel1)FUEK443$$aDE-HGF$$bSchlüsseltechnologien$$kN03$$lBioSoft$$vProgramm Biosoft$$x0$$zentfällt 000008400 9201_ $$0I:(DE-Juel1)ISB-2-20090406$$d31.12.2010$$gISB$$kISB-2$$lMolekulare Biophysik$$x0 000008400 970__ $$aVDB:(DE-Juel1)117323 000008400 980__ $$aVDB 000008400 980__ $$aConvertedRecord 000008400 980__ $$ajournal 000008400 980__ $$aI:(DE-Juel1)ICS-6-20110106 000008400 980__ $$aUNRESTRICTED 000008400 981__ $$aI:(DE-Juel1)IBI-7-20200312 000008400 981__ $$aI:(DE-Juel1)ICS-6-20110106 000008400 981__ $$aI:(DE-Juel1)ISB-2-20090406