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I. INTRODUCTION

In laboratory experiments, a physical system of interest can never be considered as being completely isolated from its environ-

ment. Therefore, in their theoretical description, the quantum system of interest (henceforth called system) should be considered

as an open quantum system, that is a system interacting with its environment. As most open quantum systems are way too com-

plicated to be treated without making approximations, the standard procedure in theoretical treatments of open quantum systems

is to derive closed approximate equations of motion of the system operators, a quantum master equation (QMEQ) from the un-

derlying time-dependent Schrödinger equation (TDSE) by eliminating the environmental degrees of freedom [1–4]. Generically,

such derivations involve the so-called Markov approximation, which is based on the assumption that the correlations of the bath

degrees of freedom vanish on a short time span, short compared to the characteristic time scale of the system dynamics. When

the time scale of the system is comparable to that of the decay of the bath correlations the Markovian approximation may no

longer be adequate [4–13].

Alternatively, without reference to any particular model, one may postulate a Markovian QMEQ for the density matrix which

preserves positivity during the time evolution (i.e. a non-negative definite density matrix at all times), as Lindblad did [4, 14]. In

this approach, the key question is then how to extract the parameters that enter the Lindblad QMEQ from the microscopic model

of interest. In this paper, we adopt a similar strategy and use a least-square minimization procedure to extract the parameters of

a Markovian QMEQ from data obtained by numerical solution of the TDSE of the system + bath. As shown later in this paper,

this Markovian QMEQ is not of the Lindblad form.

In the mathematically strict sense, the unitary Schrödinger dynamics of the system + bath is incompatible with the statement

that one or more system operators exhibit exponential decay, the signature of Markovian behavior [15]. Therefore, even though

the system + bath satisfies all the requirements for justifying a Markovian QMEQ description, when looked at in detail, the

numerical solution of the TDSE of the system + bath may still reveal non-Markovian behavior (different from Poincaré cycles

which, for the quantum systems of interest, have astronomically large time scales). Indeed, such features are observed when

solving the TDSE of spin-1/2 models [16, 17], see also later in this paper. Therefore, the central issue is not whether the dynamics

of the system is described by a Markovian QMEQ because in a strict sense is not, but rather to what extent the Markovian QMEQ

provides an accurate description of the system dynamics.

An earlier paper [18] addressed the question to what extent a QMEQ captures the salient features of the exact Schrödinger

equation dynamics of a single spin coupled to a bath of spins. This question was answered by solving the TDSE of the whole

system and subsequently fitting the data of the expectation values of the spin components to those of a Markovian QMEQ. The

main finding of that paper was that in all cases in which the approximations used to derive a Markovian QMEQ seem justified [4],

the Markovian QMEQ obtained by least-square fitting to the data obtained by solving the TDSE of the whole system describes

the dynamics of the single spin in contact with the spin bath rather well. In this case, the mathematical structure of the Markovian

QMEQ is the same as that of the Bloch equation [19] and as a phenomenological description, the Markovian QMEQ offers no

advantages over the latter. Of course, when the system contains more than one spin, the Bloch equation can no longer be used

whereas a Markovian QMEQ still has the potential to describe the system dynamics.

The main aim of this paper is to present a quantitative assessment of the Markovian QMEQ description in the case where the

system consists of two spins instead of one and a Bloch-type description can no longer be used. Such system-bath spin models

are relevant for the description of relaxation processes in nuclear magnetic and electron spin resonance [1, 20–23] and have

applications to quantum information processing [24, 25]. By using these resonance techniques one can probe the dynamics of

an individual spin but the two-spin dynamics is not directly accessible. However, with the advent of small quantum information

processors such as the IBM Quantum Experience [26], a cloud-based platform for gate-based quantum computing, it may be

possible to study the two-spin system dynamics in detail.

A second aim of this work is to use the two-spin system coupled to a heat bath as an instance to test one of the underlying

assumptions of statistical mechanics, namely the assumption that a system interacting with a thermostat approaches thermal

equilibrium. To this end, we study in detail how the two-spin system relaxes to a stationary state and scrutinize the conditions

under which this stationary state approaches its thermal equilibrium state. Here and in the following, we use the term “the system

thermalizes” if and only if there is evidence that the density matrix of the system relaxes to the thermal equilibrium state. In

other words, it is not sufficient to show that the system energy relaxes to its thermal equilibrium value: all the expectation values

of a complete set of system operators should relax to their respective thermal equilibrium values.

The paper is organized as follows. In section II, we specify the Hamiltonians of the system, bath and system-bath interaction.

Section III briefly reviews the numerical techniques that we use to solve the TDSE of the whole system, to compute the reduced

density matrix, and to prepare the bath in the thermal state at a given temperature. We present simulation results that demonstrate

that the method of preparation yields the correct thermal averages, study the relaxation to the stationary state and address the

effects of the finite size of the bath on the thermalization. Section IV recapitulates the steps in the numerical procedure to extract

a Markovian QMEQ from the data of the reduced density matrix obtained from the solution of the TDSE and presents some

representative results. Rewriting the fitted Markovian QMEQ as a dynamical map [4], the matrix of coefficients that defines

this map can be calculated numerically and is found to be indefinite instead of non-negative definite, ruling out that the fitted

Markovian QMEQ is of the Lindblad form. The paper concludes with the summary, given in section V.



3

II. SYSTEM COUPLED TO A BATH: MODEL

The Hamiltonian of the system (S) + bath (B) takes the generic form

H = HS +HB +λHSB. (1)

The overall strength of the system-bath (SB) interaction is controlled by the parameter λ . In the present work, we limit ourselves

to a system which consists of two spin-1/2 particles described by the two-site Heisenberg Hamiltonian

HS =−JS

(
σ x

1 σ x
2 +σ

y
1 σ

y
2 +σ z

1σ z
2

)
, (2)

where σσσn = (σ x
n ,σ

y
n ,σ

z
n) denote the Pauli-spin matrices for spin-1/2 particle n. Throughout the present paper, we adopt units

such that h̄ = 1, express time in units of 1/4|JS|, and to limit the amount of data, we confine ourselves to the case JS = −1/4,

i.e. the system is described by the isotropic antiferromagnetic Heisenberg model. For later reference, it is useful to recall here

that the ground state of the latter model is the singlet state defined by

|S〉= 1√
2
(| ↑↓〉− | ↓↑〉) , (3)

and that, in the units adopted in this paper, the ground state energy is Esinglet =−3/4.

We consider two extreme cases for the interaction of the two-spin system with the spin bath. In the first case, each system

spin is connected to one, different bath spin. The Hamiltonian of the system-bath interaction reads

HSB =−Jx
n,1σ x

n σ x
1 − J

y
n,1σ y

n σ
y
1 − Jz

n,1σ z
nσ z

1− Jx
m,2σ x

mσ x
2 − J

y
m,2σ y

mσ
y
2 − Jz

m,2σ z
mσ z

2, (4)

where n and m are chosen randomly from the set {3, . . . ,NB + 2} such that n 6= m. Here and in the following NB denotes the

number of bath spins. The Jα
n,1 and Jα

m,2 are real-valued random numbers in the range [−J,+J]. As the system-bath interaction

strength is controlled by λ , we may set J = 1/4 without loss of generality.

In the second case, each system spin is connected to all the bath spins. The Hamiltonian for the system-bath interaction reads

HSB =−
2

∑
j=1

NB+2

∑
n=3

(
Jx

n, jσ
x
n σ x

j + J
y
n, jσ

y
n σ

y
j + Jz

n, jσ
z
nσ z

j

)
. (5)

In this case, ‖HSB‖= O(NB). Hence, unlike for Eq. (4) for which the system-bath interaction does not depend on the number of

bath spins, for Eq. (5) the system-bath interaction increases as the number of bath spins increases [18].

For the spin bath we also consider two alternatives. The first is a ring with Hamiltonian

HB =−
NB+2

∑
n=3

(
Kx

nσ x
n σ x

n+1 +Ky
nσ y

n σ
y
n+1 +Kz

nσ z
nσ z

n+1

)
−

NB+2

∑
n=3

(hx
nσ x

n +hz
nσ z

n) . (6)

We use Eq. (6) in two very different forms. In one form, we take all the Kx
n’s, K

y
n’s, and Kz

n’s to be uniform random numbers in the

range [−K,+K] and the fields hx
n and hz

n to be uniform random numbers in the range [−hx
B,+hx

B] and [−hz
B,+hz

B], respectively.

For random couplings and random fields, it is unlikely that the model Eq. (6) is integrable (in the Bethe-Ansatz [27–29] sense)

or has any other special features such as conserved magnetization etc. In the other form, we take Kx
n = K

y
n = Kz

n = K and

hx
n = hz

n = 0 for all n. Then, Eq. (6) is just the Hamiltonian of the isotropic Heisenberg ring which is known to be integrable (in

the Bethe-Ansatz sense). Thus, a comparison of the results obtained by using these two extreme forms allows us to gauge the

importance of integrablility for the relaxation/thermalization processes of interest.

As the second model for the spin bath, we consider a spin-glass defined by the Hamiltonian

HB =−
NB+2

∑
′

m,n=3

(
Kx

m,nσ x
mσ x

n +Ky
m,nσ y

mσ y
n +Kz

m,nσ z
mσ z

n

)
−

NB+2

∑
n=3

(hx
nσ x

n +hz
nσ z

n) , (7)

where the Kx
m,n’s, K

y
m,n’s, and Kz

m,n’s are uniform random numbers in the range [−K,+K] and the prime on the summation sign

indicates that contributions with m = n are excluded. Because Eq. (7) contains (NB−1)NB spin-spin coupling terms instead of

the NB coupling terms in Eq. (6), it takes a factor NB−1 more CPU time to solve the TDSE for the same length of time interval.

Therefore, in particular for NB > 28, we use Eq. (7) judiciously.

The bath Hamiltonian Eq. (6) with random couplings and fields has the property that the distribution of nearest-neighbor

energy levels is Wigner-Dyson-like, suggesting that the corresponding classical baths exhibit chaos. Earlier work along the lines

presented in the present paper has shown that spin baths with a Wigner-Dyson-like distribution are more effective as sources for

fast decoherence than spin baths with Poisson-like distribution [30]. Fast decoherence is a prerequisite for a system to exhibit

fast relaxation to the thermal equilibrium state [16, 31]. Extensive simulation work on spin-baths with very different degrees of

connectivity [32–36] suggests that as long as there is randomness in the system-bath coupling and randomness in the intra-bath

coupling, the simple model Eq. (6) may be considered as a generic spin bath. However, as we show below, the details of the

relaxation process change if we use as a model of the bath Eq. (7) instead of Eq. (6).
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III. QUANTUM DYNAMICS OF THE WHOLE SYSTEM

The time evolution of a closed quantum system defined by Hamiltonian Eq. (1) is governed by the TDSE

i
∂

∂ t
|Ψ(t)〉= H|Ψ(t)〉. (8)

The pure state |Ψ(t)〉 of the whole system S+B evolves in time according to

|Ψ(t)〉= e−itH |Ψ(0)〉=
DS

∑
i=1

DB

∑
p=1

c(i, p, t)|i, p〉, (9)

where DS = 4 and DB = 2NB are the dimensions of the Hilbert space of the system and bath, respectively. The coefficients

{c(i, p, t)} are the complex-valued amplitudes of the corresponding elements of the set {|i, p〉} which denotes the complete set

of orthonormal states in the up–down basis of the system and bath spins.

The size of the quantum systems that can be simulated, that is the size for which Eq. (9) can actually be computed, is primarily

limited by the memory required to store the pure state.

Solving the TDSE requires storage of all the complex numbers {c(i, p, t)|i = 1, . . . ,4 , p = 1, . . . ,2NB}. Clearly, the amount

of memory that is required is proportional to 2NB+2, which increases exponentially with the number of spins of the bath. Using

64-bit floating-point arithmetic (corresponding to 16 = 24 bytes for each complex number), representing a pure state of NB +2

spin-1/2 particles on a digital computer requires at least 2NB+6 bytes. For example, for NB = 22 (NB = 34) we need at least

256 MB (1 TB) of memory to store a single state |Ψ(t)〉. In practice we need storage for three vectors, and memory for

communication buffers, local variables and the code itself.

From a numerical-analysis viewpoint, the real-time propagation by e−itH is best carried out by means of the Chebyshev

polynomial algorithm [37–40]. This algorithm is known to yield results that are very accurate (close to machine precision),

independent of the time step used [41]. A disadvantage of this algorithm is that, especially when the number of spins exceeds

28, it consumes significantly more CPU and memory resources than a Suzuki-Trotter product-formula based algorithm [41].

Advancing a pure state by one time step τ by a Suzuki-Trotter product-formula based algorithm can symbolically be written

as |Ψ〉←UK . . .U1|Ψ〉 where the U’s are sparse unitary matrices with a relatively complicated structure. A characteristic feature

of the problem at hand is that for most of the U’s, all elements of the set {c(i, p, t)|i = 1, . . . ,4 , p = 1,2NB} are involved in the

operation. This translates into a complicated scheme for efficiently accessing memory, which in turn requires a sophisticated

MPI communication scheme on a distributed memory system [42]. The CPU time required for one such typical U-operation

also increases exponentially with the number of spins.

Using the latter to solve the TDSE for 0 ≤ t ≤ 200 and NB + 2 = 36 requires somewhat more than 1 TB of memory and

takes about 15 hours of elapsed time, using 131072 IBM BlueGene/Q cores. The Chebyshev polynomial algorithm takes about

3 times this amount of resources. Therefore, we only use the latter to verify that the numerical results of the product-formula

based algorithm are, for practical purposes, as good as the numerically exact results and then use the product-formula based for

the production runs.

We end this section by addressing an important aspect of the simulation procedure. As is clear from the presentation of

the various Hamiltonians, we often use randomly chosen couplings. Likewise, to prepare the initial state of the bath (see

section III C), we also use random numbers. In practice, all the random numbers that are required to define the interactions and

to construct the initial state are generated afresh for each simulation run. In other words, we may expect that our numerical

results show fluctuations due to that the interactions or initial states are unlikely to be the same. However, as the data presented

in this paper show, the conclusions that can be drawn from the data are robust in the sense that they do not seem to depend on

different random choices of couplings and initial states. We adopt a similar strategy to explore the parameter space, which is

huge. Instead of picking a particular point in this space and making small excursions away from it, we pick a few of these points

randomly. Provided that the conclusions do no significantly depend on this random picking of parameters, which seems to be

the case for points in parameters space that we have explored, it is unlikely that we are drawing these conclusion on the basis of

data obtained for special points in parameter space.

A. Density matrix

According to quantum theory, observables are represented by Hermitian matrices and the correspondence with measurable

quantities is through their averages defined as [43, 44]

〈A (t)〉= Tr ρ(t)A = Tr ρA (t), (10)

where A denotes a Hermitian matrix representing the observable, ρ(t) is the density matrix of the whole system S+B at time t

and Tr denotes the trace over all states of the whole system S+B.
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The state of the system S is completely described by the reduced density matrix

ρS(t)≡ TrBρ(t), (11)

where ρ(t) is the density matrix of the whole system S+B at time t, TrB denotes the trace over the degrees of freedom of the

bath, and TrSρS(t) = Tr ρ(t) = 1.

For numerical purposes it is convenient to express 4× 4 matrices in terms of the sixteen 4× 4 matrices defined by

{e0, . . . ,e15} ≡ {111⊗112,σ
x
1⊗112,σ

y
1⊗112,σ

z
1⊗112,111⊗σ x

2 ,111⊗σ
y
2 ,111⊗σ z

2,σ
x
1⊗σ x

2 ,σ
y
1⊗σ

y
2 ,σ

z
1⊗σ z

2,σ
x
1⊗σ

y
2 ,σ

y
1⊗σ x

2 ,σ
x
1⊗

σ z
2,σ

z
1 ⊗σ x

2 ,σ
y
1 ⊗σ z

2,σ
z
1 ⊗σ

y
2}. These matrices span the vector space of 4× 4 complex-values matrices and are orthonormal

with respect to the inner product (X |Y ) = (1/4)TrSX†Y . With the help of these basis vectors, the reduced density matrix can,

without loss of generality, be written as

ρS(t) =
1

4

15

∑
i=0

ρi(t)ei, (12)

where all the ρi(t) are real numbers. From Eq. (12) it follows immediately that

ρi(t) = TrS ρS(t)ei = Tr ρ(t)ei, (13)

and that ρ0(t) = 1 because TrSρS(t) = 1. Equation (13) shows that ρi(t) is nothing but the expectation value of the operator ei,

as measured with respect to the whole system.

B. Random state technology

If the numerical solution of the TDSE for a pure state of NB +2 spins already requires resources that increase exponentially

with the number of spins of the bath, computing Eq. (10) seems an even more daunting task. Fortunately, we can make use of

the “random-state technology” to reduce the computational cost to that of solving the TDSE for one pure state [45]. The key is

to note that if |Φ〉 is a pure state, picked randomly from the D = 2NB+2-dimensional unit hypersphere, one can show in general

that for Hermitian matrices X [45–50]

Tr X ≈ D〈Φ|X |Φ〉. (14)

As shown in Appendix A, if D is large the statistical errors resulting from approximating Tr X by D〈Φ|X |Φ〉 are small. For large

baths, this property makes the problem amenable to numerical simulation. Therefore, from now on, we replace the “Tr ” by a

matrix element of a random pure state whenever the trace operation involves a number of states that increases exponentially with

the number of spins (in the present case, bath spins only). In practice, as the dimension of the Hilbert space of the bath may be

assumed to be large, we can, using this “random-state technology”, replace the trace operation in Eq. (10) by solving the TDSE

with the initial state

|Ψ〉=
√

Dρ|Φ〉, (15)

such that

〈A (t)〉 ≈ 〈Ψ|A (t)|Ψ〉= 〈Ψ(t)|A |Ψ(t)〉. (16)

Similarly, we may compute the trace over the bath degrees of freedom as

(TrBA ρ(t))i, j ≈
DB

∑
p=1

c∗(i, p, t)c( j, p, t) 〈i, p|A | j, p〉, (17)

and the expectation values of the operators ei are given by

ρi(t)≈ 〈Ψ(t)|ei|Ψ(t)〉, i = 1, . . . ,15. (18)
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TABLE I. Simulation data for the system energy and the system-bath energy as obtained from Eq. (20) using the thermal random state Eq. (19)

with β = 5. The Hamiltonian of the system-bath interaction and spin bath are given by Eq. (4) and Eq. (6), respectively. The first row lists

the exact result ES(β = 5) =−0.730 of the isolated two-spin system, the exact ground state energy being E0 =−0.750. The data of columns

(3,4) and (5,6) were obtained from different realizations of the thermal random state and interaction parameters Jα
n,1, Jα

m,2 and Kα
n , see Eqs. (4)

and (6).

λ NB 〈HS〉 λ 〈HSB〉 〈HS〉 λ 〈HSB〉
0 − −0.730 0 −0.730 0

0.125 16 −0.728 −0.378×10−1 −0.731 −0.173×10−1

0.125 18 −0.728 −0.335×10−1 −0.715 −0.098×10−1

0.125 20 −0.725 −0.216×10−1 −0.742 −0.117×10−1

0.125 22 −0.732 −0.452×10−1 −0.728 −0.399×10−1

0.125 24 −0.727 −0.259×10−1 −0.720 −0.045×10−1

0.250 16 −0.737 −0.147×10−1 −0.726 −0.432×10−1

0.250 18 −0.730 −0.075×10−1 −0.718 −0.291×10−1

0.250 20 −0.727 −0.215×10−1 −0.723 −0.395×10−1

0.250 22 −0.730 −0.234×10−1 −0.728 −0.330×10−1

0.250 24 −0.732 −0.181×10−1 −0.724 −0.310×10−1

0.500 16 −0.705 −0.612×10−1 −0.719 −0.423×10−1

0.500 18 −0.689 −1.102×10−1 −0.715 −0.665×10−1

0.500 20 −0.717 −0.473×10−1 −0.716 −0.514×10−1

0.500 22 −0.719 −0.472×10−1 −0.721 −0.661×10−1

0.500 24 −0.712 −0.496×10−1 −0.711 −0.687×10−1

C. Thermal equilibrium state

As a first check on the numerical method, it is of interest to simulate the case in which the system+bath is initially in thermal

equilibrium and study the effects of the bath size NB and system-bath interaction strength λ on the expectation values of the

system spins. The procedure is as follows. First we generate a thermal random state of the whole system, meaning that

|Φ(β )〉= e−βH/2|Φ〉
〈Φ|e−βH |Φ〉1/2

, (19)

where β denotes the inverse temperature. As one can show that for any observable A (t) [45]

〈A (t)〉= Tr e−βHA (t)

Tr e−βH
≈ 〈Φ(β )|A (t)|Φ(β )〉, (20)

we can use 〈Φ(β )|A (t)|Φ(β )〉 to estimate 〈A (t)〉. As shown in Appendix A, in general we may expect the statistical errors

incurred by approximation Eq. (20) to vanish exponentially with the number of spins.

As e−βH commutes with e−itH , 〈A (t)〉 = 〈A (t = 0)〉 is time independent. Excluding the trivial case that [H,A (t)] = 0,

〈Φ(β )|A (t)|Φ(β )〉= 〈Φ(β )|e+itHA e−itH |Φ(β )〉 depends on time. Indeed, in general the random state |Φ(β )〉 is unlikely to be

an eigenstate of H. Therefore, the simulation data obtained by solving the TDSE with |Φ(β )〉 as the initial state should display

some time dependence and indeed, that is what our simulation data shows. However, from Appendix A, it follows directly that

such statistical fluctuations vanish very fast with the number of spins, a fact which is also corroborated by our simulation data

(not shown). Therefore, although using “random state technology” introduces artifacts in the form of statistical fluctuations, for

all purposes considered in this paper, the magnitudes of these fluctuations are so small that they can safely be neglected.

In Table I we present simulation results of the system energy 〈HS〉 and system-bath energy λ 〈HSB〉, calculated according

to Eq. (20). The Hamiltonian of the system-bath interaction and spin bath are given by Eq. (4) and Eq. (7), respectively,

NB = 16,18,20,22,24 and λ = 0.125,0.25,0.5. For reference, we note that the ground state energy of the system in the singlet

state is equal to −3/4 = 0.75. As Table I shows, 〈HS〉 ≈ −0.73 hence, for the system being studied, β = 5 corresponds to a

fairly low temperature.

The data of columns (3,4) and (5,6) were obtained for different realizations of the system-bath and bath interaction parameters

and different realizations of the thermal random states, giving some indication of the statistical fluctuations stemming from both

the use of random couplings and different realizations of the thermal random states.
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The results of the system-bath energy λ 〈HSB〉 for different λ give an indication for the range of λ for which the system-bath

interaction may be considered to be a perturbation. Taking into account the statistical fluctuations, we conclude from the data of

Table I that for β = 5, λ = 0.5 may be outside the perturbative regime while λ = 0.125,0.25 are not. Disregarding statistical

fluctuations, the data of Table I obtained with HSB given by Eq. (4) do not show a clear signal of a dependence on the number

of bath spins NB. From a standard perturbation expansion, it follows that the perturbative regime grows as β decreases. Hence,

the statement that λ = 0.5 may be outside the perturbative regime does not necessarily hold for say β = 1 and in fact it does not

(data not shown). From Table I it is also clear that the system-bath energy λ 〈HSB〉 may vary considerably from one realization

to another, which in view of the random choices of the couplings is not a surprise.

In the case that we use system-bath interaction Hamiltonian Eq. (5), each system spin interacts with each of the NB bath spins.

Therefore, the system-bath energy is proportional to NB, in contrast to the case of Hamiltonian Eq. (4) in which the system-bath

energy is of order one. In this respect, the system-bath interaction Hamiltonian Eq. (5) is not different from e.g. the standard

spin-boson model [4]. Taking into account that when using Eq. (5), the effective system-bath interaction is proportional to λNB

instead of proportional to λ , the simulation data obtained by using Eq. (5) instead of Eq. (4) are similar to those shown in Table I

and are therefore not shown.

In general, to determine whether the system-bath interaction is weak or not we adopt a pragmatic approach: we simply

compute the averages and compare them with the theoretical results of the isolated system. The coupling λ is considered to be

small enough if the averages and theoretical results agree within a few percent.
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FIG. 1. (color online) Time dependence of the energy (open circles, a–c) and entropy (open circles, d–f) of the two-spin system in contact

with a spin bath at moderate temperature, as obtained from the solution of the TDSE for three different initial states |ψ > ⊗|Φ(β = 1)〉
where |Φ(β = 1)〉 denotes a thermal random state Eq. (21) of the bath only. The system Hamiltonian is given by Eq. (2) with JS = 1/4

(antiferromagnetic Heisenberg model). The Hamiltonian of the system-bath interaction and spin-glass bath are given by Eq. (4) and Eq. (7),

respectively. The number of bath spins is NB = 20, K = 1/2, hx
B = hz

B = 0. The system-bath interaction strength is λ = 0.5. (a): |ψ >= |S >,

where |S > is the singlet state as given by Eq. (3); (b): |ψ >= | ↑↓>; (c): |ψ >= | ↑↑>. Stars in (a–c): ground state energy of the isolated

two-spin system; crosses in (a–c): thermal energy of the isolated two-spin system at β = 1; stars in (d–f): maximum entropy of the isolated

two-spin system; crosses in (d–f): entropy of the isolated two-spin system at β = 1;

D. Relaxation to a stationary state

In this and the sections that follow, the random state approach with H replaced by HB is used to construct the thermal

equilibrium state of the bath, that is

|Φ(β )〉= e−βHB/2|Φ〉
〈Φ|e−βHB |Φ〉1/2

, (21)

where |Φ〉 denotes a random state of the bath only.
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FIG. 2. (color online) Time dependence of the energy (open circles, a–c) and entropy (open circles, d–f) of the two-spin system in contact with

a spin bath at low temperature, as obtained from the solution of the TDSE with the initial state |ψ > ⊗|Φ(β = 5)〉. The system Hamiltonian

is given by Eq. (2) with JS = 1/4 (antiferromagnetic Heisenberg model). The Hamiltonian of the system-bath interaction and spin bath are

given by Eq. (4) and Eq. (6), respectively. The number of bath spins is NB = 20, K = 1, hx
B = hz

B = 1/4. The system-bath interaction strength

is λ = 0.25. (a): |ψ >= |S >, where |S > denotes the singlet state given by Eq. (3); (b): |ψ >= | ↑↓>; (c): |ψ >= |R > ⊗|R > where |R >
denotes a random superposition of spin-up and spin-down states. Stars in (a–c): ground state energy of the isolated two-spin system; crosses

in (a–c): thermal energy of the isolated two-spin system at β = 5; stars in (d–f): maximum entropy of the isolated two-spin system; crosses in

(d–f): entropy of the isolated two-spin system at β = 5;
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FIG. 3. (color online) Finite-size scaling of the system energy in the stationary state as a function of the number of bath spins as obtained from

the solution of the TDSE with the initial state | ↑↑> ⊗|Φ(β = 1)〉. Solid lines represent the function a+ bN−c
B with a and b determined by

the best fit of the data. The Hamiltonian of the system-bath interaction is given by Eq. (4), respectively. (a): integrable spin bath Hamiltonian

Eq. (6) with Kx
n = K

y
n = Kz

n = K = 1/2 and hx
B = hz

B = 0, system-bath interaction λ = 1/2 and NB = 14,16,18,20,22,24,28,32,34; (b):

spin bath Hamiltonian Eq. (7) with all K’s random in the interval [−1/2,+1/2], hx
B = hz

B = 0, system-bath interaction λ = 1/2 and NB =
14,16,18,20,22,24,28,32.

In Fig. 1, we present typical simulation results of the system energy and system entropy as a function of time and for three

different initial states and β = 1. These results illustrate that

(i) a bath of NB = 20 is sufficiently large to let the system relax to a stationary state,

(ii) if the energy of the initial state of the system (〈HS(t = 0)〉=−0.75) is much smaller than the thermal energy of the isolated

system, the system energy in the stationary state is smaller than the latter and the entropy is a monotonically increasing
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function of time, indicating that the system only gains energy from the bath, see Fig. 1(a),

(iii) if the energy of the initial state of the system (〈HS(t = 0)〉=−0.25) is close to the system energy ES(β = 1) =−0.223 in

the thermal equilibrium state, the stationary state is (very) close to the thermal equilibrium state at β = 1, Fig. 1(b),

(iv) if the energy of the initial state of the system (〈HS(t = 0)〉 = +0.25) is larger than the thermal energy of the isolated

system, the system energy in the stationary state is larger than the latter and the entropy is not a monotonic function of

time, indicating that the system not only releases energy into the bath but also gains energy from the bath, Fig. 1(c).

Qualitatively, these conclusions are corroborated by the results at low temperature β = 5, shown in Fig. 2. Note that the data

presented in Fig. 2 have been obtained for a spin bath, the Hamiltonian of which is very different from the one used to produce

the data shown in Fig. 1. The time scale of the relaxation process obtained using a spin-glass-type bath and the ring with random

interactions seem quite different but that is primarily a trivial effect of taking different temperatures (β = 1 in Fig. 1 and β = 5

in Fig. 2). Generally speaking, the relaxation time of the bath is determined by βK and the connectivity of the bath spins. In

general, this is a quite complicated issue with quite some exceptional cases and different aspects [16, 30–36]. In this paper, we

have used of this knowledge to select baths that ensure relaxation to equilibrium.

Both the results presented in Fig. 1 and Fig. 2 strongly suggest that for finite spin baths (NB ≤ 34), the stationary state depends

on the initial state of the system. From statistical mechanics we may expect that the stationary state will approach the thermal

state of the isolated system as NB→∞ because the system-bath interaction is weak. We scrutinize this expectation by performing

simulations for different NB.

As spin-bath Hamiltonians, we consider Eqs. (6) and Eq. (7) but in contrast to all other results presented in this paper which

are obtained with all couplings between the bath spin chosen randomly, in this particular case we take the couplings in Eqs. (6)

to be uniform (i.e. Kx
n = K

y
n = Kz

n = K for all n, no randomness). In other words, we compare TDSE data obtained with the

isotropic antiferromagnetic Heisenberg ring (integrable bath) and a fully connected spin-glass model with random couplings.

In Fig. 3, we show how the system energy in the stationary state, i.e. the value of the system energy at the end of the simulation

run, changes with the number of spins NB of the spin bath. Finite-size scaling results for the integrable spin bath (Heisenberg an-

tiferromagnet) Eq. (6) are presented in Fig. 3(a). The least-square fitting of a+bN−1
B (with NB = 14,16,18,20,22,24,28,32,34)

to the data yields a≈−0.21 and b≈ 1.58, with a RMSE of about 0.0031 (data not shown). On the other hand, the least-square

fitting of a+bN−c
B to the data yields a≈−0.20, b≈ 2.39 and c≈ 1.12 with a RMSE of about 0.0026 and is shown as the solid

line in Fig. 3(a). Apparently, in the case of the integrable baths with up to NB = 34 spins, it is not easy to tell whether the system

energy will converge to the correct one of the isolated system as NB→ ∞ but at least the data do not indicate otherwise.

In Fig. 3(b) we show the results of the same analysis except that we used the fully connected random-coupling spin bath

(Eq. (7)) instead of the integrable bath. The least-square fitting of a+bN
−3/2

B (with NB = 14,16,18,20,22,24,28,32) to the data

yields a ≈ −0.23 and b ≈ 6.10, with a RMSE of about 0.006 (data not shown). On the other hand, the least-square fitting of

a+ bN−c
B to the data yields a ≈ −0.22, b ≈ 12.87 and c ≈ 1.82 with a RMSE of about 0.005 and is shown as the solid line in

Fig. 3(b). For both fits, the extrapolated system energies (the values of a) are in good agreement with the thermal energy of the

isolated system (ES(β = 1) =−0.223).

In general, the effect of the bath size on the system energy (and entropy) becomes more pronounced as the temperature of

the bath decreases. For instance, looking at Fig. (2)(b), it is clear that for a bath of NB = 20 spins at β = 5, the system energy

(≈−0.30) is far off from its thermal equilibrium value −0.73. Increasing the size of the bath to NB = 28 spins yields a smooth

curve for the system energy as a function of time with a value of (≈ −0.59) for long times (data not shown). Thus, for β = 5,

system energy changes by a factor of two if the bath size changes from NB = 20 to NB = 28, a change which is much larger than

in the case of β = 1 (see Fig. 3). Unfortunately, our computer budget does not allow a systematic study of the finite-size scale

of the approach to thermal equilibrium for all the cases explored in this paper.

As mentioned earlier, to establish whether the system has evolved to its thermal equilibrium state with a temperature that is

close to the bath temperature, it is necessary to consider the expectation values of a complete set of system operators. Equiv-

alently, we may also determine the effective Hamiltonian that describes the final state of the simulation run. From the data of

the expectation values of the complete set of system operators {ei | i = 0, . . . ,15} at the final time tfinal of a simulation, we can

extract the effective Hamiltonian ĤS from the ansatz

〈Ψ(tfinal)|ei|Ψ(tfinal)〉=
Tr e−β ĤS ei

Tr e−β ĤS

, i = 0, . . . ,15. (22)

This is most conveniently done by expanding e−β ĤS in terms of {ei | i = 0, . . . ,15} and using the orthogonality of the ei’s. Then,

−β ĤS follows by numerically computing the logarithm of e−β ĤS .

If the final state |Ψ(tfinal)〉 is a thermal random state we must have ĤS ≈ HS. For instance, from the simulation run (with

NB = 20) of which some data is shown in Fig. 1(b), we find that −β ĤS = −1.00σ x
1 σ x

2 − 0.99σ
y
1 σ

y
2 − 1.00σ z

1σ z
2 +R(0.006)

where R(ε) denotes the sum of all remaining system operators, their prefactors being smaller than ε . Thus, in this case, the final

state is indeed very close to a thermal random state at β = 1. In contrast, the simulation run (with NB = 32) and initial state | ↑↑>
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⊗|Φ(β = 1)〉 (data of the system energy is shown in Fig. 3(b)), yields−β ĤS =−0.88σ x
1 σ x

2−0.88σ
y
1 σ

y
2−0.88σ z

1σ z
2 +R(0.001),

indicating that the system is in thermal equilibrium at β = 0.88 instead of β = 1, in agreement with the observation that for this

choice of initial state of the system, the finite size of the bath affects the final state (see Fig. 3(b)).

E. Thermalization: relation to earlier work

The numerical results presented above are, for all practical purposes, exact and provide additional insight into the question

whether a (classical or quantum) system coupled to a heat bath thermalizes or not. In fact, there are only a very few rigorous

results about the thermalization of a classical system in contact with a thermostat, i.e. interacting with a large bath. Bogolyubov

proved that the density matrix of an ensemble of classical oscillators relaxes to the thermal equilibrium state under rather general

conditions [51–54]. In Appendix B, we present some illustrative, numerically exact simulation results of a system consisting

of one classical oscillator which interacts (harmonically) with a small bath of classical oscillators. We show that for a suitable

choice of model parameters, an ensemble of such an integrable model indeed thermalizes but a single trajectory does not. Most

remarkably, simulations have shown that the canonical distribution of a subsystem, containing several particles, of a closed

classical system of a ring of coupled harmonic oscillators (integrable system) or magnetic moments (nonintegrable system)

follows directly from the solution of the time-reversible Newtonian equation of motion in which the total energy is strictly

conserved [55]. Regarding rigorous results for open quantum systems, the situation is not much brighter, even though to begin

with, the quantum theoretical description is statistical in nature [4]. For one harmonic oscillator weakly interacting with a bath

of oscillators, the closed-form equation of motion of the position and momentum of the system oscillator can be used to prove

analytically that the system energy relaxes to its thermal equilibrium value if the number of bath oscillators is taken to be infinite

and a suitable choice of model parameters is made [4]. We do not know of a rigorous proof that also the density matrix of the

system relaxes to the thermal equilibrium (Gibbs) state, as in the case of the classical system [52–54]. As discussed above,

under certain conditions, our numerical results for a two-spin system coupled to a finite spin bath show that the two-spin system

thermalizes.

In the last two decades, theoretical research on the thermalization process of quantum systems interacting with a bath has

focused on the situation in which the whole system (S+B) is described by a single pure state. The so-called “canonical typi-

cality” [46, 47, 56–58] states that the reduced density matrix of a system is canonical if the state of the whole system is one of

the overwhelming majority of wave functions in the subspace corresponding to the energy interval encompassed by the micro-

canonical ensemble, namely a random state of the confined Hilbert space. Conceptually, canonical typicality is very similar to

the random-state method [39, 45, 48–50, 59–61] employed in this paper.

Recently, a testable theoretical result regarding the time scale of the relaxation process of closed quantum system has

been obtained [62]. More specifically, a closed form expression for the relaxation process in terms of the function, F(t) =
D
(
|φ(t)|2−1/D

)
/(D−1) where φ(t) is the Fourier transform of the spectral density of the whole system was derived [62]. For

special choices of the spectral density, this formula predicts a very short timescale of the relaxation process of the order of the

Boltzmann time (h/kBT ), in agreement with other results [63].
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FIG. 4. (color online) (a) The absolute values of three of the nine bath-operator correlations Eq. (23) as obtained by solving the TDSE for a

bath of NB = 20 spins with the initial state | ↑↓> ⊗|Φ(β = 5)〉. The bath-operator correlations that have absolute values that are too small

to be seen on the scale of the plot have been omitted. The Hamiltonian of the bath is given by Eq. (6) with K = 1/2 and hx
B = hz

B = 0; (b)

Correspondig two-spin averages; (c) F(t) as obtained from the 20 lowest eigenvalues of the bath Hamiltonian.

Although it is unlikely that the initial states, Hamiltonians and observables that we consider in this paper satisfy the conditions

to derive the testable theoretical result mentioned earlier [62], it may nevertheless be instructive to inquire whether there is a

relation between F(t) and the relaxation time of certain operators. The most likely candidates for operators that show fast decay
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FIG. 5. (color online) A single-spin average (a,d) and a two-spin correlation (b,e) as obtained by solving the TDSE (solid lines) and the

QMEQ (circles) with eτA and B obtained by least-square fitting to the TDSE data. The other 13 expectation values show similar agreement

and are therefore not shown. Also shown is the RMSE error (c,f) defined by Eq. (27). The system Hamiltonian is given by Eq. (2) with

JS = 1/4 (antiferromagnetic Heisenberg model). The Hamiltonian of the system-bath interaction and spin bath are given by Eq. (4) and

Eq. (6), respectively. The number of bath spins is NB = 28, K = 1, hx
B = hz

B = 1/4. The system-bath interaction strength is λ = 0.25. The

initial state is | ↑↓〉⊗ |Φ(β )〉. (a,b,c) β = 1; (d,e,f) β = 5.

are the bath-operators

Bx =−Jx
nσ x

n − Jx
mσ x

m

By =−Jy
nσ y

n − Jy
mσ y

m

Bz =−Jz
nσ z

n− Jz
mσ z

m, (23)

which define the coupling between the system and the bath, see Eq. (4). In Fig. 4)(a,b) we present simulation results for

C(α,β ) = 〈Bα(t)Bβ (0)〉 for α,β = x,y,z and two-spin expectation values 〈σα
1 (t)σα

2 (t)〉 for α = x,y,z and F(t) as obtained

from the 20 lowest eigenvalues of the bath Hamiltonian. Although the bath is prepared at fairly low temperature (β = 5), the

bath operator correlations decay very fast, significantly faster than the two-spin averages while the decay of F(t) is, on these

time scales neither fast or slow. Hence, not entirely unexpected, F(t) does not describe the relaxation of the bath-operators or

two-spin correlations because the conditions required to describe the relaxation process in terms of F(t) may not apply in the

case at hand.

F. Summary

Our simulation data show that due to the interaction with the spin bath, the system relaxes to a stationary state. For finite NB,

this stationary state depends on the initial state of the system. If the difference between the initial system energy and the thermal

energy of the isolated system is small, the system relaxes to its thermal state. Otherwise this difference decreases as the number

of spins in the bath NB increases.

IV. QUANTUM MASTER EQUATION

From the analysis presented in section III, it follows that for spin baths of moderate size, the system evolves to a stationary

state, which, depending on the initial state of the system, is close to the thermal state of the isolated two-spin system. As

explained in section III E, the TDSE data show that the approach to equilibrium depends on the difference between the energy
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of the system in the initial state, the energy of the (isolated) system in the thermal state and how well the system can exchange

energy with the bath. As the Markovian QMEQ is obtained by least-square fitting to the TDSE data (see later), the initial state

dependence of the former is merely reflecting the initial state dependence of the original TDSE data and is not a feature the

Markovian QMEQ itself.

In this section, we scrutinize how well a Markovian QMEQ of the two-spin system describes the exact time evolution of the

two-spin system coupled to a spin bath.

In general, a Markovian QMEQ can be written as [4]

∂ ρ̃ρρ(t)

∂ t
= Aρ̃ρρ(t)+b, (24)

where ρ̃ρρ represents the expectation values of the operators ei, reshaped as a vector and the matrix A and vector b do not depend

on time. Specifically, for the problem at hand, ρ̃ρρ(t) = (ρ̃0(t), . . . , ρ̃15(t))
T with ρ̃0(t) = 1 for all t, see Eqs. (12) and (18). The

formal solution of Eq. (24) for a finite time step τ reads

ρ̃ρρ(t + τ) = eτAρ̃ρρ(t)+
∫ τ

0
e(τ−u)Ab du = eτAρ̃ρρ(t)+B, (25)

where

B =
∫ τ

0
e(τ−u)Ab du, (26)

does not depend on the time t.

As explained in section III, solving the TDSE yields the data set ϒ ≡ {ρi(t) | i = 0, . . . ,15 ; t = 0,τ, . . . ,T = mτ}. This data

set can be used as input to a least-square procedure that determines the matrix eτA and vector B by minimizing the root-mean-

square-error between the data of the set ϒ and the data of the set ϒ̃ ≡ {ρ̃i(t) | i = 0, . . . ,15 ; t = 0,τ, . . . ,T = mτ} obtained by

solving Eq. (25). A detailed account of this procedure is given in Ref. 18 and will therefore not be repeated here. We quantify

the difference of the reconstructed data, i.e. the solution of the “best” approximation in terms of the QMEQ, and the original

data obtained by solving the TDSE by the root-mean-square-error (RMSE)

RMSE(t) =

√√√√ 1

15

15

∑
i=1

(ρi(t)− ρ̃i(t))
2. (27)

We also check if the approximate density matrix of the system, ρ̃ρρ(t), is non-negative definite.

In Fig. 5 we present some representative results of fitting the QMEQ Eq. (25) to the TDSE data. We only show one single-

spin average (〈Ψ(t)|σ z
1|Ψ(t)〉) and one two-spin average (〈Ψ(t)|σ x

1 σ x
2 |Ψ(t)〉) because the other averages show similar good

agreement. For β = 1 the QMEQ describes the TDSE data very well. For β = 5 the agreement is excellent for the two-spin

averages but apparently, quantitatively, the QMEQ does not describe the decay of the single-spin averages very well. As in the

case of one spin coupled to a spin bath, it overestimates the relaxation time [18]. The overall, excellent agreement is characteristic

for the many data sets that we have analysed. Therefore, we do not present additional figures.

The accuracy of the Markovian QMEQ is not the same over the whole time interval, see Figs. 5(c,f) but is, as a compact

description of the TDSE data, quite good. It is accurate for short times and becomes more accurate for long times (when the

system has relaxed). In general, the accuracy increase as beta decreases. In Fig. 5, the difference between the TDSE data and

those of the fitted Markovian master equation only becomes “visible” in the plots at low temperature (β = 5), as can be expected

from the magnitude of the RMSE errors (see Figs. 5(c,f)). This is primarily due to the decay of bath correlations becoming slower

as the temperature decreases. The difference between TDSE and QMEQ data in Fig.5d is also present in the case that the system

consists on only one spin [18]. The two-spin averages for y- and z-components are very close to those of the x-components. At

low temperature (β = 5), the two-spin average is larger (in absolute value) than what can be expected on the basis of a classical

spin model. Because of the non-zero temperature, the system state is not exactly a singlet but the simulation shows how the

system-spins, which initially are in the up-down state, become entangled with each other and are, trivially, entangled with the

bath spin (see Ref. 33 for a simulation study of entanglement generation in spin systems).

Although from Fig. 5 the agreement between the “exact” TDSE solution for the whole system and the “fitted” QMEQ for

the two-spin system looks very good, a more detailed analysis reveals that occasionally, the reduced density matrix obtained by

iterating Eq. (25) has one negative eigenvalue. For the data shown in Fig. (5)(a,b,c) this happens at t = 0.6 where one eigenvalue

of the reduced density matrix is equal to −0.00046 and the three others are positive. For the data shown in Fig. (5)(d,e,f) this

happens 12 times in the interval [0.6,11.4], the smallest eigenvalues being larger than −0.003 while the other three eigenvalues

are positive. In the course of the project, many data sets (not shown) for different NB, β , and model parameters have been

generated. Some of these data sets yield a fitted QMEQ with a density matrix that has one small negative eigenvalue for a few

particular times t. We have not been able to detect any systematics in when and why such small negative eigenvalues occur.
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FIG. 6. (color online) A single-spin average (a) and two-spin correlations (b,c) as obtained by solving the TDSE (solid lines) and the QMEQ

(circles) with eτA and B obtained by least-square fitting to the TDSE data. The other expectation values show similar agreement and are

therefore not shown. The system Hamiltonian is given by Eq. (2) with JS = 1/4 (antiferromagnetic Heisenberg model). The Hamiltonian of

the system-bath interaction and spin bath are given by Eq. (4) and the spin-glass model Eq. (7), respectively. The number of bath spins is

NB = 32, K = 1/2 and hx
B = hz

B = 0. The system-bath interaction strength is λ = 0.5. The initial state is | ↑↑〉⊗ |Φ(β = 1)〉.

The fact that Markovian QMEQs may lead to density matrices that are not always non-negative definite is well-known [64, 65].

In particular, when the characteristic time scale of the system is comparable to that of the thermal bath, the effect of the finite

correlation time of the thermal bath may become important. Then, the Markovian approximation used to derive the QMEQ

may no longer be adequate and it becomes necessary to account for non-Markovian aspects and treat the initial condition

correctly [4–13, 66]. One exception is the Lindblad QMEQ, which is also of the form Eq. (24) and therefore Markovian [4, 14].

By construction the Lindblad QMEQ preserves positivity (a non-negative definite density matrix) during the time evolution [14].

In contrast to the common procedure of deriving a Markovian QMEQ, the least-square procedure used to extract the matrix

eτA and vector B from the TDSE data does not rely on perturbation theory: it simply finds the QMEQ Eq. (25) that fits the TDSE

data best (in the least-square sense). There is no a-priori reason why this procedure should yield a non-negative definite density

matrix but apparently, with some rare exceptions, it does. However, in all these rare exceptions the violation of non-negative

definiteness is rather small. A simple explanation for these artifacts is given in section IV B.

A. Relation to Markovian quantum master equations

It is now of interest to relate the Markovian description Eq. (25) to the standard theory of the Markovian QMEQ [4]. In the

following, we closely follow Ref. 4 (chapter 3).

In this paper, we only consider initial states of the whole system that can be represented as ρ(0) = ρS(0)⊗ρB(0), impying that

initially, the system and bath degrees of freedom are uncorrelated [4]. In different words, we assume that the initial state is not

entangled. Although there is no a-priori reason why the state of the whole system should be a product state ρ(0) = ρS(0)⊗ρB(0),
it is common starting point for discussing (non)-Markovian QMEQ’s [4] and therefore we have adopted this common starting

point too. Furthermore, it is well-known that if the system and bath spins interact, as a result of the unitary time evolution of the

whole system, the system and the bath become entangled which, expressed in symbols, means that we have ρ(t) 6= ρS(t)⊗ρB(t)
for t > 0.

Hence, the 4×4 density matrix ρS(τ) can be written as [4]

ρS(τ) =V (τ)ρS(0) = TrBe−iτH ρS(0)⊗ρB(0) e+iτH , (28)

where ρB(0) is the density matrix of the bath at time t = 0, not necessarily the thermal equilibrium state. Writing ρB(0) in terms

of its (non-negative) eigenvalues µi and eigenvectors |ϕ j〉, we have [4]

ρS(τ) =V (τ)ρS(0) =
DB

∑
i, j=1

Wi, j(τ)ρS(0)W
†
i, j(τ), (29)

where the (DB)
2, 4×4 matrices Wi, j(τ) are given by

Wi, j(τ) =
√

µ j〈ϕi|e−iτH |ϕ j〉=
1

4

15

∑
k=0

ek

[
TrBekWi, j(τ)

]
. (30)
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The last equality in Eq. (30) follows from writing the 4×4 matrix Wi, j(τ) in terms of the basis vectors {e0, . . . ,e15} introduced

in section III A. Combining Eq. (29) and Eq. (30), we have

ρS(τ) =V (τ)ρS(0) =
15

∑
k,l=0

ck,l(τ)ekρS(0)el , (31)

where the matrix c(τ) with elements

ck,l(τ) =
1

16

DB

∑
i, j=1

[
TrBekWi, j(τ)

][
TrBelWi, j(τ)

]†
, (32)

is Hermitian and non-negative [4]. Using the expansion ρS(τ) = 4−1 ∑
15
i=0 ρi(τ)ei, see Eq. (12), and TrSek el = 4δk,l , we obtain

ρk(τ) =
1

4

15

∑
i, j,l=0

ci, j(τ)ρl(0)TrSekeiele j =
15

∑
i, j=0

Mk,l(τ)ρl(0), (33)

where

Mk,l(τ) =
1

4

15

∑
i, j=0

ci, j(τ)TrSekeiele j ≡
15

∑
i, j=0

Xk,l;i, jci, j(τ) , Xk,l;i, j =
1

4
TrSekeiele j. (34)

Regarding the pairs (i, j) and (k, l) as single indices, Eq. (34) takes the form of a linear set of equations. From the numerical

calculation of the matrix elements Xk,l;i, j, it follows that the matrix X is invertible. The matrix X relates the elements of the 4×4

density matrix ρS(τ) in representation Eq. (31) to the expectation values ρk(τ) = TrSρS(τ) ek for k = 0, . . . ,15 and vice versa.

The formal relations Eq. (28) – (34) hold for any value of τ . In particular, we have ρS(t) = V (t)ρS(0) and ρS(t + τ) =
V (t + τ)ρS(0). The assumption of Markovian behavior is often formalized by requiring that V (t + τ) = V (τ)V (t) for t,τ ≥ 0,

i.e. V (t) satisfies the semigroup property [4]. Then, we have ρS(t + τ) =V (τ)ρS(t) and Eq. (33) generalizes to

ρk(t + τ) =
15

∑
i, j=0

Mk,l(τ)ρl(t). (35)

Now, we are in the position to relate the matrix eτA and vector B that we obtain from least-square fitting to the TDSE data to

the matrix M(τ). To this end, we rewrite Eq. (25) as



ρ̃0(t + τ)

ρ̃1(t + τ)

. . .

ρ̃15(t + τ)


=




1 0 . . . 0

B1 (eτA)1,1 . . . (eτA)1,15

. . .

B15 (eτA)15,1 . . . (eτA)15,15







ρ̃0(t)

ρ̃1(t)

. . .

ρ̃15(t)


≡ M̃(τ)




ρ̃0(t)

ρ̃1(t)

. . .

ρ̃15(t)


 , (36)

where we used the fact that ρ̃0(t) = 1 for all t. Assuming that ρk(t) = ρ̃k(t) for k = 0, . . . ,15 and for all t ≥ 0 it follows from

Eqs. (35) and (36) by inspection that M(τ) = M̃(τ).
From our simulation results, it is an empirical fact that Eq. (36), which clearly is of the Markovian type, describes the TDSE

data of the two-spin system rather well. On the other hand, the exact relations Eq. (28) – (34) and the assumption that V (t)
satisfies the semigroup property also leads to a Markovian QMEQ [4]. Therefore it is of interest to inquire to what extent the

theoretical arguments that lead to Eq. (35) support our empirical findings.

We address this question by considering a representative example. In Fig. 6, we present simulation results of some system-

spin averages, as obtained from a simulation of 34 spins with a spin-glass bath of NB = 32 spins. From Fig. 6, it is clear that

the QMEQ Eq. (36), with eτA and B obtained by least-square fitting to the TDSE data, describes the TDSE data very well. In

this cases (as in many others), the density matrix reconstructed from the data (ρ̃0(t), . . . , ρ̃15(t)) obtained by iterating Eq. (36) is

non-negative definite, for all t multiples of τ . However, if we compute c(τ) = X−1M(τ), we find that the matrix c is Hermitian

but has eigenvalues in the interval [−1.0771,1.4809], in conflict with the theoretical treatment in which the Hermitian matrix c

is non-negative definite by construction (see Eq. (32)). This is the case for all the data that we have analysed. Recall that the

matrix c given by Eq. (32) being non-negative definite is a direct consequence of the assumption that at t = 0 the density matrix

of the whole system is a product state of the system and bath density matrices. However, in the case at hand, the matrix c is

obtained from the matrix M which in turn is determined by least-square fitting to the TDSE data of the whole time interval and

hence there is no theoretical argument that supports the hypothesis that in this case the matrix c should be non-negative definite,

and indeed it is not. The coefficients that enter the Lindblad QMEQ are related to limτ→0 c(τ)/τ [4]. As the matrix c is found

to be non-negative definite, we cannot extract a Lindblad QMEQ from the TDSE data. This suggests that our empirical finding

that the Markovian QMEQ Eq. (36) describes the TDSE data of the two-spin system rather well does not find an explanation in

the standard theory of open quantum systems.
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B. Discussion

Our findings presented in this section can be summarized as follows.

(1) The reduced density matrix that we obtain from the solution of the TDSE is strictly non-negative (trivial).

(2) The Markovian QMEQ that we extract from the TDSE data through the least square fitting gives a very good, quantitive

description of these data (see e.g. data presented).

(3) This Markovian QMEQ cannot be cast in the Lindblad form (section IV A)

(4) As a result of (3), there is no guarantee that Markovian QMEQ referred to in (2) preserves positivity.

(5) Our numerical results show that in very rare cases, the Markovian QMEQ referred to in (2) yields a density matrice that has

(small) negative eigenvalues, as might be expected on the basis of (4).

(6) One possible way out of problem (5) might be to perform a least-square fit with the additional constraint that the reduced

density matrix is non-negative but we have not yet found a way to do this.

V. SUMMARY

Data obtained by the solution of the time-dependent Schrödinger equation of a system of two spin-1/2 particles interacting with

a bath of up to 34 spin-1/2 particles has been used to (i) study the relaxation and thermalization of the two-spin system and (ii)

make a quantitative assessment of the Markovian quantum master equation description of the two-spin system dynamics. It was

found that the two-spin system relaxes to a stationary state and that under certain conditions, the two-spin system thermalizes.

We also studied the effect of the finite size of the bath on the thermalization process.

We demonstrated that a least-square fit of a Markovian quantum master equation to the time-dependent Schrödinger equation

data of the reduced density matrix, yields a very good description of the true Schrödinger dynamics of the two-spin system, even

though this Markovian quantum master equation seems mathematically incompatible with the Lindblad equation. The resolution

of this apparent conflict is left for future research.
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Appendix A: Estimate of the fluctuations

A simple method to estimate the statistical errors on the averages obtained from the random thermal state is to make use of

the multivariate Taylor expansion for the average

E

[
x

y

]
≈ E[x]

E[y]
− Cov[x,y]

E2[y]
+

E[x]Var[y]

E3[y]
, (A1)

where Cov[x,y] = E[xy]−E[x]E[y] and use the corresponding approximation for the variance

Var

[
x

y

]
≈ Var[x]

E2[y]
−2

E[x]Cov[x,y]

E3[y]
+

E2[x]Var[y]

E4[y]
. (A2)

As explained in Section III C, the first step in the construction of a random thermal state is to generate a Gaussian random

state |Φ〉 = ∑
D
n=1 ξn|n〉 where the ξn’s are complex-valued Gaussian random variables and the set {|n〉} can be any complete

set of orthonormal states for the Hilbert space of dimension D (in our case, the states | ↑ . . . ↑〉, . . . , | ↓ . . . ↓〉). We denote the

expectation with respect to the multivariate Gaussian probability distribution P(ξ1, . . . ,ξD) of the ξ ’s by E[.]. We have

P(ξ1, . . . ,ξD) =
D

∏
a=1

[
1

2πσ2
e−|ξa|2/2σ2

]
d(Re ξa)d(Im ξa)
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E[ξ ∗a ] = E[ξa ] = E[ξa ξb ] = E[ξ
∗
a ξ
∗
b ]

E[ξ ∗a ξp ] = 2σ2δa,p

E[ξ ∗a ξ ∗b ξpξq ] = E[ξ ∗a ξp ]E[ξ
∗
b ξq ]+E[ξ ∗n ξq ]E[ξ

∗
mξp ] = 4σ4

(
δa,pδb,q +δa,qδb,p

)
. (A3)

For the application of interest, we may, without loss of generality, simplify the writing by choosing σ = 1/
√

2, hence we will

do so in the following.

Making use of the properties Eq. (A3) of Gaussian random variables, it readily follows that for any matrix X we have

E[〈Φ|X |Φ〉] =
D

∑
a,p=1

E[ξ ∗a ξp ]〈a|X |p〉=
D

∑
a

E[ξ ∗a ξa ]〈a|X |a〉=
D

∑
a

E[ξ ∗a ξa ]〈a|X |a〉= Tr X , (A4)

and because 〈Φ|X |Φ〉= 〈Φ|X†|Φ〉∗, the corresponding variance is given by

Var(〈Φ|X |Φ〉) = E[|〈Φ|X |Φ〉|2]−|E[〈Φ|X |Φ〉]|2

=
D

∑
a,p,b,q=1

E[ξ ∗a ξp ξb ξ ∗q ]〈a|X |p〉〈b|X |q〉∗−|Tr X |2

=
D

∑
a,b=1

(
〈a|X |a〉〈b|X |b〉∗+ 〈a|X |b〉〈a|X |b〉∗

)
−|Tr X |2

= Tr XX†. (A5)

In the case at hand, we use Eqs. (A1)–(A5) as follows. We set Z = e−βH and X = e−βH/2Ye−βH/2 with H = H† and Y = Y †.

From Eq. (A5) it follows that Var [〈Φ|Z|Φ〉] = Tr Z2. Furthermore, we have

E[〈Φ|X |Φ〉〈Φ|Z|Φ〉] =
D

∑
a,p,b,q=1

E[ξ ∗a ξp ξ ∗b ξq ]〈a|X |p〉〈b|Z|q〉= (Tr X)(Tr Z)+Tr XZ

= (Tr ZY )(Tr Z)+Tr e−2βHY = (Tr ZY )(Tr Z)+Tr Z2Y, (A6)

from which it follows that Cov[〈Φ|X |Φ〉,〈Φ|Z|Φ〉] = Tr Z2Y . Collecting all contributions, we find

E

[ 〈Φ|X |Φ〉
〈Φ|Z|Φ〉

]
≈ Tr ZY

Tr Z
− Tr Z2Y

(Tr Z)2
+

Tr ZY

Tr Z

Tr Z2

(Tr Z)2

= 〈Y 〉+ Tr Z2

(Tr Z)2

{
Tr ZY

Tr Z
− Tr Z2Y

Tr Z2

}
, (A7)

and

Var

[ 〈Φ|X |Φ〉
〈Φ|Z|Φ〉

]
≈ Tr (ZY )2

(Tr Z)2
−2

Tr ZY

Tr Z

Tr Z2Y

(Tr Z)2
+

(
Tr ZY

Tr Z

)2
Tr Z2

(Tr Z)2

=
Tr Z2

(Tr Z)2

{
Tr (ZY )2

Tr Z2
−2

Tr ZY

Tr Z

Tr Z2Y

Tr Z2
+

(
Tr ZY

Tr Z

)2}
. (A8)

Using the definition F(β ) =−(1/β )Tr Z of the free energy of the whole system (described by H), we may write

Tr Z2

(Tr Z)2
= e−2β [F(2β )−F(β )], (A9)

and it is easy to show that

∣∣∣∣
Tr ZY

Tr Z
− Tr Z2Y

Tr Z2

∣∣∣∣≤ 2‖Y‖, (A10)

∣∣∣∣
Tr (ZY )2

Tr Z2
−2

Tr ZY

Tr Z

Tr Z2Y

Tr Z2
+

(
Tr ZY

Tr Z

)2 ∣∣∣∣≤ 4‖Y‖2, (A11)

where ‖Y‖ denotes the largest (in absolute value) eigenvalue of Y .
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For finite values of β , F(2β )−F(β ) = O(N) where N = log2 D denotes the number of spins of the whole system. Therefore,

for finite values of β , the correction term in Eq. (A7) and the variance Eq. (A8) vanish exponentially with the number of spins.

In particular, in the limit of infinite temperatures we have limβ→0 Tr Z2/(Tr Z)2 = 1/D.

In the zero temperature limit, it is expedient to write Eqs. (A7) and (A8) in terms of the eigenvalues E0 < E1 ≤ . . . of H. We

have Tr Z = e−βE0

[
1+ e−β (E1−E0)+ . . .

]
and find that

lim
β→∞

Tr Z2

(Tr Z)2
= 1

lim
β→∞

{
Tr ZY

Tr Z
− Tr Z2Y

Tr Z2

}
= 0

lim
β→∞

{
Tr (ZY )2

Tr Z2
−2

Tr ZY

Tr Z

Tr Z2Y

Tr Z2
+

(
Tr ZY

Tr Z

)2}
= 0, (A12)

showing that in this limit, the random thermal state approach yields the exact average 〈Y 〉.

Appendix B: Harmonic oscillators

In this section, we present some simulation results of Bogolyubov’s model of a collection of classical oscillators [52–54]. The

Hamiltonian of this model takes the generic form Eq. (1) with each term being defined by

HS =
p2

2m
+

1

2
mω2q2, (B1)

HB =
NB

∑
n=1

(
p2

n

2mn

+
1

2
mnω2

n q2
n

)
, (B2)

λHSB = λ
NB

∑
n=1

αnqnq, (B3)

where m, p, q, ω and mn, pn, qn, ωn are masses, momenta, coordinates, and frequencies of the oscillator in the system and bath,

respectively. The αn’s represent the system-bath coupling constants and λ sets the scale of the latter. For simplicity, we take

m = mn = 1.

Bogolyubov proved that the density matrix ρS(t,q, p) of the system approaches the canonical distribution if the following two

conditions are satisfied: (i) the thermal state of the bath of oscillators is described by the canonical distribution

ρB = e−βHB/ZB, (B4)

where β is the inverse temperature and ZB is the partition function of the bath, and (ii) in the limit N→ ∞, the relation

∑
n

α2
n

ω2
n

→
∫

dωJ(ω), (B5)

holds. Bogolyubov’s original result only concerns the asymptotic t→∞ behavior of the ensemble- and time-averaged trajectories

of the system. To the best of our knowledge, Bogolyubov’s result is the only rigorous result about the thermalization of a

classical system interacting with a thermostat. Therefore, in the light of the finite quantum spin systems studied in this paper, it

is of interest to investigate finite-size effects for the classical model Eqs. (B1)–(B3) by simulation.

The simulation is most conveniently carried out by numerical diagonalization of the sum of the quadratic forms Eqs. (B1)–

(B3) and yields results which are, for all practical purposes, exact. Writing P = (p, p1, p2, . . . , pN) and Q = (q,q1,q2, . . . ,qN),
the Hamiltonian reads

H =
1

2
PT P+

1

2
QT MQ, (B6)

where the matrix M is given by

M =




ω2 λα1/2 λα2/2 . . . λαN/2

λα1/2 ω2
1 0 . . . 0

λα2/2 0 ω2
2 . . . 0

...
...

...
. . .

...

λαN/2 0 0 . . . ω2
N



. (B7)
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FIG. 7. The time evolution of the system energy ES with the model parameters a = 0.5, b = 0.01, and λ = 0.01. The number of bath oscillators

is NB = 511. The initial state of the system is TS = 0. The initial state of the bath is drawn randomly from the canonical distribution with

β = 1. The straight line denotes the energy per oscillator of the total system.
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FIG. 8. The histogram ρS(ES) at different times and two different initial states of the system, TS = 0 (a) and TS = 1.1 (b). The model parameters

are the same as in Fig. 7. The histogram represents an ensemble of 104 random realizations of initial thermal states of the bath at β = 1. The

straight line denotes the expected distribution exp(−βES) with β = 1.

The determinant of the matrix M is easily found to be det(M) = ω2
1 ω2

2 · · ·ω2
N(ω

2− λ 2 ∑
NB
n=1 α2

n/4ω2
n ). For the whole system

to be stable, the matrix M should be positive-definite, implying that the value of the global coupling λ should satisfy λ 2 <

4ω2/∑
NB
n=1 α2

n/ω2
n . By diagonalizing the matrix M = UDU+ and setting P′ = U+P and Q′ = U+Q, the Hamiltonian changes

into H = (P′T P′+Q′T DQ′)/2, i.e. a set of independent harmonic oscillators for which a closed-form analytical solution is

known. The solution in terms of the original coordinates is obtained by application of the transformation P =UP′ and Q =UQ′.
For finite systems, the above condition (ii) is not easy to fulfil and therefore, it is important to make a judicious choice of the

model parameters. Inspired by suggestions made in Ref. 54, we choose ω = 1, αn = 1, and ω2
n = a+(b(n−1))2 with a = 0.5

and b = 0.01. With this particular choice of the parameters, a bath of NB = 511 oscillators was found to be large enough to

mimic the infinite thermostat. Note that as NB→ ∞, it is necessary to let b→ 0 in order to have a well-defined thermodynamic

limit. In the simulation, the initial state (the values of qn and pn) of the bath are chosen randomly from the canonical distribution

with β = 1 (see condition (i)). The initial state of the system is chosen to be q = p =
√

TS, where TS plays the roles of a fictitious

temperature of the isolated system.

First, we consider a single realization of the initial state and let this state evolve in time. The quantity of interest is the system

energy ES = (p2 +q2)/2. If the system thermalizes in the course of following a single trajectory, then the time-averaged system

energy ES should be approximately equal to the total energy per particle. In Fig. 7, we present the time evolution of the system

energy ES for one particular trajectory up to t = 106. The total energy per particle is about E = 0.98. The time average of the

system energy ES is about ĒS = 0.54. Therefore, it is clear from the simulation results that in Bogolyubov’s model, one trajectory

is not enough for the system to thermalize, in strong contrast with models of coupled harmonic oscillators (integrable system) or

magnetic moments (nonintegrable system) in which the system, defined as a part of the whole system, thermalizes for one single

trajectory [55].

Next, we investigate the properties of an ensemble of many trajectories, obtained by starting from many different initial states.

As mentioned earlier, the initial state of the bath degrees of freedom are drawn randomly from the canonical distribution. Now
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the quantity of interest is the distribution of the system energy ES at specific times. We build a histogram ρS(ES) by recording,

at specific times, the number of trajectories with system energies in the range [ES,ES +∆ES]. Several representative results of

ρS(ES) are presented in Fig. 8. This figure shows results obtained from simulations with two different initial states of the system

as a function of time t and clearly demonstrates that by taking the ensemble average, the system thermalizes at long times, i.e.,

ρS(ES)→ e−ES as t→ ∞.

Summarizing: for the mentioned special choice of the model parameters, we have verified Bogolyubov’s result by numerical

simulations. By taking ensemble averages and for sufficiently long times, the system is described by the canonical distribution.

We also show that the ensemble averaging is necessary to recover Bogolyubov’s result, very much unlike in our previous study

on the coupled harmonic oscillators and magnetic moments [55]. We have tried out quite a few other choices of the model

parameters (data not shown) but we rarely observed nice thermalization of the system, at least not with the number of bath

oscillators for which exact diagonalization is possible.
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