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Mixed Weyl semimetals and low-dissipation
magnetization control in insulators by spin–orbit
torques
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Reliable and energy-efficient magnetization switching by electrically induced spin–orbit

torques is of crucial technological relevance for spintronic devices implementing memory and

logic functionality. Here we predict that the strength of spin–orbit torques and the

Dzyaloshinskii-Moriya interaction in topologically nontrivial magnetic insulators can exceed

by far that of conventional metals. In analogy to the quantum anomalous Hall effect, we

explain this extraordinary response in the absence of longitudinal currents as hallmark of

monopoles in the electronic structure of systems that are interpreted most naturally within

the framework of mixed Weyl semimetals. We thereby launch the effect of spin–orbit torque

into the field of topology and reveal its crucial role in mediating the topological phase

transitions arising from the complex interplay between magnetization direction and

momentum-space topology. The presented concepts may be exploited to understand and

utilize magnetoelectric coupling phenomena in insulating ferromagnets and antiferromagnets.
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P
rogress in control and manipulation of the magnetization in
magnetic materials is pivotal for the innovative design of
future nonvolatile, high-speed, low-power, and scalable

spintronic devices. The effect of spin–orbit torque (SOT) provides
an efficient means of magnetization control by electrical currents
in systems that combine broken spatial inversion symmetry and
spin–orbit interaction1–5. These current-induced torques are
believed to play a key role in the practical implementation of
various spintronics concepts, since they were demonstrated to
mediate the switching of single ferromagnetic layers6,7 and anti-
ferromagnets8 via the exchange of spin angular momentum
between the crystal lattice and the (staggered) collinear magne-
tization. Among the two different contributions to SOTs, the so-
called antidamping torques are of utter importance owing to the
robustness of their properties with respect to details of disorder5.

Only recently, the research on electrically controlled magneti-
zation switching started to reach out to topological condensed
matter—for example, very efficient magnetization switching has
been achieved lately in metallic systems incorporating topological
insulators9. Although in latter cases a strong torque can be gen-
erated, the resulting electric-field response does not rely on the
global topological properties of these trivial systems. The dis-
covery of a quantized version of the anomalous Hall effect in
magnetic insulators with nontrivial topology in momentum
space10–12 led to a revolution in forging new spintronic device
concepts that utilize topology. On the other hand, moving the
field of magnetization control by SOTs into the realm of topo-
logical spintronics would open bright avenues in exploiting

universal arguments of topology for designing magnetoelectric
coupling phenomena in magnetic insulators.

With this work, we firmly put the phenomenon of SOT on
the topological ground. Employing theoretical techniques we
investigate the origin and size of antidamping SOTs and
Dzyaloshinskii-Moriya interaction (DMI) in prototypes of
topologically nontrivial magnetic insulators, demonstrate that
complex topological properties have a direct strong impact on the
emergence and magnitude of SOT and DMI in various classes
of magnetic insulators, and formulate intriguing perspectives for
the electric-field control of magnetization in the absence of
longitudinal charge currents.

Results
Mixed Weyl semimetals and SOT. In a clean sample, the anti-
damping SOT T acting on the magnetization in linear response to
the electric field E is mediated by the so-called torkance tensor τ,
i.e., T= τE13 (see Fig. 1a, b). The Berry phase nature of the
antidamping SOT manifests in the fact that the tensor elements τij
are proportional to the mixed Berry curvature Ωm̂k

ij ¼
êi � 2 Im

Pocc
n ∂m̂uknj∂kjukn
� �

of all occupied states13–15 which
incorporates derivatives of lattice-periodic wave functions ukn
with respect to both crystal momentum k and magnetization
direction m̂. Here, êi denotes the ith Cartesian unit vector. Inti-
mately related to the antidamping SOT is the DMI16,17 crucial for
the emergence of chiral domain walls and chiral skyrmions18–21

which can be quantified by the so-called spiralization tensor D
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Fig. 1 Emergence of mixed Weyl points. a The magnetization m̂ of a topologically nontrivial insulator is subject to the antidamping torque T if an electric

field E is applied. b The resulting reorientation of the magnetization by θ can trigger a topological phase transition to the trivial insulator. c Schematic

evolution of two energy bands in the complex phase space of crystal momentum and magnetization direction, where the colors of the bands indicate

different kx. If ky is tuned, the electronic structure displays a monopole, which is correlated with a change in the mixed Chern number Z. Such crossing

points are observed in d the model of magnetically doped graphene with hopping t, and e the functionalized bismuth film, where colors indicate the

magnetization direction m̂= (sin θ, 0, cos θ). The shown monopoles arise at θ= 90° and k¼ 0:29 2π
ax
;0:41 2π

ay
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for (d), and θ= 43° and k= (0.48, 0.19) in

internal units for (e)
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reflecting the change of the free energy F due to chiral pertur-
bations ∂jm̂ according to F ¼

P

ij Dijêi � m̂ ´ ∂jm̂
� �13.

Optimizing the efficiency of magnetization switching in
spintronic devices by current-induced SOTs relies crucially on
the knowledge of the microscopic origin of most prominent
contributions to the electric-field response. To promote the
understanding, it is rewarding to draw an analogy between the
antidamping SOT as given by Ωm̂k

ij and the intrinsic anomalous
Hall effect as determined by the Berry curvature
Ωkk

ij ¼ 2Im
Pocc

n ∂kiuknj∂kjukn
� �22. Both Ω

kk and Ωm̂k are com-
ponents of a general curvature tensor Ω in the composite (k, m̂)
phase space combining crystal momentum and magnetization
direction23,24. Band crossings, also referred to as magnetic
monopoles in k-space, are known25 to act as important sources
or sinks of Ω

kk. When transferring this concept to current-
induced torques, crossing points in the composite phase space
can be anticipated to give rise to a large mixed Berry curvature
Ωm̂k , which in turn yields the dominant microscopic contribution
to torkance and spiralization. Thus, materials providing such
monopoles close to the Fermi energy can be expected to exhibit
notably strong SOTs and DMI.

In the field of topological condensed matter26,27 the recent
advances in the realization of quantum anomalous Hall or Chern
insulators have been striking11,12. These magnetic materials are
characterized by a quantized value of the anomalous Hall
conductivity and an integer nonzero value of the Chern number
in k-space, C ¼ 1=ð2πÞ

R

Ωkk
xy dkxdky . On the other hand, topolo-

gical semimetals have recently attracted great attention due to
their exceptional properties stemming from monopoles in
momentum space. Among these latter systems, magnetic Weyl
semimetals host gapless low-energy excitations with linear
dispersion in the vicinity of nondegenerate band crossings at

generic k-points28–31, which are sources of Ωkk. Also referred to
as Weyl fermions, these quasiparticles are conventionally
described by the Hamiltonian Hw ¼

P

i vikiσi, where σ= (σx,
σy, σz) is the vector of Pauli matrices. Besides the on-going
intensive efforts in discovering new type-I and type-II Weyl
semimetals29,30,32, scrutinizing the stability and symmetry
protection of the Weyl points and uncovering exotic transport
properties of the Weyl phase are hot topics of ever-growing
research interest33.

Here, we introduce the concept of a mixed Weyl semimetal by
formally replacing one of the momentum variables with the
magnetization direction (specified by an angle θ) in the usual
Weyl Hamiltonian. This results in the low-energy description of
the system in the combined phase space of k= (kx, ky) and θ by
Hmw= vxkxσx + vykyσy + vθθσz, where θ is the angle that the
magnetization m̂= (sin θ, 0, cos θ) makes with the z-axis. By
introducing the concept of a mixed Weyl semimetal, we
endeavour to generalize the notion of a Weyl point to the case
of entangled crystal momentum and magnetization direction
variables. A distinct property of a mixed Weyl semimetal is that
while it is an insulator for a general value of θ, it exhibits band
crossings at the Fermi energy for certain distinct values of the
magnetization direction, determined by the symmetry of the
system. In other words, as illustrated in Fig. 1c, mixed Weyl
semimetals as described by the Hamiltonian Hmw feature
monopoles in the composite phase space of k and θ. These
monopoles serve as the sources of the general curvature tensor Ω.
In analogy to conventional Weyl semimetals28, we can char-
acterize the topology and detect magnetic monopoles by
monitoring the flux of the mixed Berry curvature through planes
of constant ky as given by the integer mixed Chern number Z ¼
1=ð2πÞ

R

Ωm̂k
yx dθdkx (Fig. 1c). Taking the general viewpoint of

magnetization dynamics in topologically nontrivial materials,
here we demontrate the existence of mixed Weyl semimetals and
focus on the implications of the corresponding monopoles for
magnetoelectric properties, leaving the analysis of symmetry
requirements which guarantee their emergence for future studies.
In the following, we show that a significant electric-field response
near monopoles in mixed Weyl semimetals is invaluable in
paving the road towards low-dissipation magnetization control by
SOTs34.

Magnetically doped graphene. We begin with a tight-binding
model of magnetically doped graphene35:

H ¼ �t
P

hijiα

c
y
iαcjα þ itso

P

hijiαβ

êz � ðσ ´ dijÞc
y
iαcjβ

þλ
P

iαβ

ðm̂ � σÞcyiαcjβ � λnl
P

hijiαβ

ðm̂ � σÞcyiαcjβ;
ð1Þ

which is sketched in Fig. 2a. Here, cyiα (ciα) denotes the creation
(annihilation) of an electron with spin α at site i, 〈…〉 restricts the
sums to nearest neighbors, and the unit vector dij points from j to
i. Besides the usual hopping with amplitude t, the first line in
Eq. 1 contains the Rashba spin–orbit coupling of strength tso
originating in the surface potential gradient of the substrate. The
remaining terms in Eq. 1 are the exchange energy due to the local
(λ) and nonlocal (λnl) exchange interaction between spin and
magnetization. Depending on m̂, the nonlocal exchange describes
a hopping process during which the spin can flip. The Methods
section provides further details on the tight-binding model and its
numerical solution.

First, by monitoring the evolution of the mixed Chern number
Z we demonstrate that the above model hosts a mixed Weyl
semimetal state. Indeed, as shown in Fig. 2b, the topological index
Z changes from −2 to 0 at a certain value of ky, indicating thus
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Z in the insulating regions, and ay= 3a/2. c–e Energy dependence of the

anomalous Hall conductivity σxy ¼ Ce2=h ¼ e2=ð2πhÞ
R

Ωkk
xy dkxdky , the

torkance τyx, and the spiralization Dyx, respectively, for an out-of-plane

magnetization. Insets show the corresponding momentum-space

distributions summed over all occupied states in the vicinity of the K-point
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the presence of a band crossing in composite phase space that
carries a topological charge of +2. One of these monopoles
appears near the K-point off any high-symmetry line if the
magnetization is oriented in-plane along the x-direction (see
Fig. 1d). The emergence of the quantum anomalous Hall effect35

(Fig. 2c), over a wide range of magnetization directions can be
understood as a direct consequence of the magnetic monopoles
acting as sources of the curvature Ω

kk. Correspondingly, for m̂
out of the plane, the system is a quantum anomalous Hall
insulator. Moreover, large values of the mixed curvature Ωm̂k in
the vicinity of the monopole are visible in the momentum-space
distributions of torkance and spiralization in the insets of Fig. 2d,
e, respectively. For an out-of-plane magnetization, the primary
microscopic contribution to the effects arises from an avoided
crossing along ΓK—a residue of the Weyl point in (k, θ)-space.
Since the expression for the mixed Berry curvature relies only on
the derivative of the wavefunction with respect to one of the
components of the Bloch vector, the symmetry between kx and ky
in the distributions of torkance and spiralization is broken
naturally (see Methods).

As a consequence of the monopole-driven momentum-space
distribution, the energy dependence of the torkance τyx (Fig. 2d)
displays a decent magnitude of 0.1 ea in the insulating region
(with a being the interatomic distance), and stays constant
throughout the band gap. In contrast to the Chern numbers C and
Z, the torkance τyx is, however, not guaranteed to be quantized to
a robust value, i.e., the height of the torkance plateau in Fig. 2d is
sensitive to fine details of the electronic structure such as
magnetization direction and model parameters. Because of their
intimate relation in the Berry phase theory13,36,37, the plateau in
torkance implies a linear behavior of the spiralization Dyx within
the gap, changing from 8mta/uc to −6 mta/uc as shown in
Fig. 2e, where uc refers to the in-plane unit cell containing two
atoms.

To provide a realistic manifestation of the model considera-
tions above, we study from ab initio systems of graphene

decorated by transition-metal adatoms (Fig. 4a). These systems,
which exhibit complex spin–orbit mediated hybridization of
graphene p states with d states of the transition metal, have by
now become one of the prototypical material classes for
realization of the quantum anomalous Hall effect38–42. Details
on the first-principles calculations are provided in the Methods
section. In the Chern insulator phase of these materials with
magnetization perpendicular to the graphene plane, depending
on the transition-metal adatom, both torkance and spiralization
can reach colossal magnitudes that originate from mixed Weyl
points. In the case of W in 4 × 4-geometry on graphene, for
example, the torkance amounts to a very large value of τyx= 2.9
ea0 (with a0 being Bohr’s radius), and the spiralization Dyx ranges
from −5 meVa0/uc to 60 meVa0/uc (Fig. 4b–e), surpassing
thoroughly the values obtained in metallic magnetic hetero-
structures5,13 and non-centrosymmetric bulk magnets21. Since
the details of the electronic structure can influence the value of
the torkance in the gap, upon replacing W with other transition
metals, the magnitude of SOT and DMI can be tailored in the
gapped regions of corresponding materials according to our
calculations.

Functionalized bismuth film. Aiming at revealing pronounced
magnetoelectric coupling effects in magnetic insulators with lar-
ger band gaps as compared to the above examples, we turn to a
semi-hydrogenated Bi(111) bilayer (Fig. 3a), which is a prominent
example of functionalized insulators realizing nontrivial topolo-
gical phases42. As we show, semi-hydrogenated Bi(111) bilayer is
a mixed Weyl semimetal. For an out-of-plane magnetization, the
system is a valley-polarized quantum anomalous Hall insulator43

with a magnetic moment of 1.0 μB per unit cell, and it exhibits a
large band gap of 0.18 eV at the Fermi energy as well as a distinct
asymmetry between the valleys K and K′ (Fig. 3b).

Analyzing the evolution of the mixed Chern number Z as a
function of ky in Fig. 3b, we detect two magnetic monopoles of
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opposite charge that emerge at the transition points between the
topologically distinct phases with Z ¼ �1 and Z ¼ 0. Alter-
natively, these crossing points and the monopole charges in the
composite phase space could be identified by monitoring the
variation of the momentum-space Chern number C with
magnetization direction. These monopoles occur at generic
points near the valley K for θ= 43° (see Fig. 1e) and in the
vicinity of the K′-point for θ= 137°, respectively. The presence of
such mixed Weyl points in the electronic structure drastically
modifies the behavior of the general curvature Ω in their vicinity,
as visible from the three-dimensional representation of Ω

displayed in Fig. 3c, d. Revealing characteristic sign changes
when passing through monopoles in composite phase space, the
singular behavior of the Berry curvature underlines the role of the
mixed Weyl points as sources or sinks of Ω. For an out-of-plane
magnetization, the complex nature of the electronic structure in
momentum space manifests in the quantization of C to +1
(Fig. 3e), which is primarily due to the pronounced positive
contributions near K, where the bands come closest to each other.
Calculations of the energy dependence of the torkance and
spiralization in the system, shown in Fig. 3f, g, reveal the
extraordinary magnitudes of these phenomena of the order of 1.1
ea0 for τyx and 50 meVa0/uc for Dyx, exceeding by far the typical
magnitudes of these effects in magnetic metallic materials5,13,21.

At this point, we would like to comment on the role of the
magnetic anisotropy energy for the effects that we study. Our
calculations show that the magnetic state of the considered
systems is stabilized by anisotropy energies on the order of
1 meV, which is comparable to the values obtained in metallic
heterostructures such as Co/Pt. As a consequence of the magnetic
anisotropy energy, the magnetization is subject to an additional
torque if m̂ is not aligned with the easy axis (or lies outside of the
easy plane). This magnetic anisotropy torque is qualitatively very
distinct from the electrically controlled antidamping SOT as it is
not determined by the Berry curvature, and thus not responsive

to the presence of mixed Weyl points. Performing explicit
calculations, we estimate that for the example of the functiona-
lized bismuth film with θ= 30° the magnitude of the antidamping
SOT exceeds the magnetic anisotropy torque if the applied in-
plane electric field strength is larger than a relatively small value
of 5 mV/Å. The exact relation between the magnetic anisotropy
torque and the antidamping SOT can thus be influenced either by
tuning the magnitude of the applied in-plane electric field, or by
tuning the strength of the magnetic anisotropy barrier via the
application of an out-of-plane electric field39.

Proof of monopole-driven SOT enhancement. An important
question to ask is whether the colossal magnitude of the SOT in
the insulators considered above can be unambiguously identified
with the mixed Weyl semimetallic state. In the following, we
answer this question by explicitly demonstrating the utter
importance of the emergent mixed monopoles for driving pro-
nounced magnetoelectric response. First, by removing the mixed
Weyl points from the electronic structure of the model (1) via,
e.g., including an intrinsic spin–orbit coupling term, we confirm
that the electric-field response is strongly suppressed, which
promotes the monopoles as unique origin of large SOT and DMI.
Second, to verify this statement from the first-principles calcu-
lations, we analyze the electric-field response throughout the
topologically trivial gaps above the Fermi level that are high-
lighted in Figs. 3b and 4b. Since these gaps do not exhibit the
mixed Weyl points, we obtain a greatly diminished magnitude of
the torkance τyx within these energy regions as apparent from
Figs. 3f and 4d.

Finally, we clearly demonstrate the key role of these special
points by studying an illustrative example: a thin film of GaBi
with triangular lattice structure (Fig. 4g). The initial system is a
nonmagnetic trivial insulator, on top of which we artificially
apply an exchange field B= B0(sin θ, 0, cos θ), with the purpose of
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triggering a topological phase transition as a function of the
exchange field strength, see Supplementary Note 1. When tuning
the exchange field strength B0 we carefully monitor the evolution
of the system from a trivial magnetic insulator for |B0|≤ 0.2 eV to
a mixed Weyl semimetal as indicated by the emergence of
magnetic monopoles in the electronic structure. The latter phase
is accompanied by the quantum anomalous Hall effect prominent
for a finite range of directions θ, for instance, if B is perpendicular
to the film plane (Fig. 4h, i). Comparing in Fig. 4f the electric-field
response for these two distinct phases, we uniquely identify
drastic changes in sign and magnitude of the torkance τyx with the
transition from the trivial insulator to the mixed Weyl semimetal
hosting monopoles near the Γ-point. This proves the crucial
relevance of emergent monopoles in driving magnetoelectric
coupling effects in topologically nontrivial magnetic insulators.

Discussion
Remarkably, the magnetization switching via antidamping tor-
ques in mixed Weyl semimetals can be utilized to induce topo-
logical phase transitions from a Chern insulator to a trivial
magnetic insulator mediated by the complex interplay between
magnetization direction and momentum-space topology in these
systems as illustrated in Fig. 1a, b. In the case of the functiona-
lized bismuth film, for instance, the material is a trivial magnetic
insulator with a band gap of 0.25 eV if the magnetization is
oriented parallel to the film plane. Nevertheless, the resulting
antidamping torkance in this trivial state is still very large, and the
DMI exhibits a strong variation within the gap, see Supplemen-
tary Note 2 and Supplementary Figs. 1 and 2. We therefore
motivate experimental search and realization of large magneto-
electric response and topological phase transitions in quantum
anomalous Hall systems fabricated to date12,44–46. Overall, mixed
Weyl semimetals that combine exceptional electric-field response
with a large band gap (such as, e.g., functionalized bismuth films)
lay out extremely promising vistas in room-temperature appli-
cations of magnetoelectric coupling phenomena for low-
dissipation magnetization control—a subject which is currently
under extensive scrutiny (see, e.g., refs. 34, 47, 48). In contrast to
the antidamping SOT in magnetic metallic bilayers (such as Co/
Pt) for which large spin–orbit interaction in the nonmagnetic
substrate is necessary for generating large spin Hall effect and
large values of SOT4, the magnitude of the SOT in insulating
phases of a mixed Weyl semimetal is driven by the presence of the
mixed monopole rather than the spin–orbit strength itself. This
opens perspectives in exploiting a strong magnetoelectric
response of weak spin–orbit materials.

In the examples that we considered here, the nontrivial
topology of mixed Weyl semimetals leads to DMI changes over a
wide range of values throughout the bulk band gap, implying that
proper electronic structure engineering enables us to tailor both
strength and sign of the DMI in a given system, for instance, by
doping or applying strain. Such versatility could be particularly
valuable for the stabilization of chiral magnetic structures such as
skyrmions in insulating ferromagnets. In the latter case, very large
values of the antidamping SOT arising in these systems would
open exciting perspectives in manipulation and dynamical
properties of chiral objects associated with minimal energy con-
sumption by magnetoelectric coupling effects. Generally, we
would like to remark that magnetic monopoles in the composite
phase space, which we discuss here, do not only govern the
electric-field response in insulating magnets but are also relevant
in metals, where they appear on the background of metallic
bands. Ultimately, in analogy to the (nonquantized) anomalous
Hall effect in metals, this makes the analysis of SOT and DMI in
metallic systems very complex owing to competing contributions

to these effects from various bands present at the Fermi energy. In
addition, the electric-field strength in metals is typically much
smaller, limiting thus the reachable magnitude of response phe-
nomena as compared to insulators.

At the end, we reveal the relevance of the physics discussed
here for antiferromagnets (AFMs) that satisfy the combined
symmetry of time reversal and spatial inversion. SOTs in such
AFMs are intimately linked with the physics of Dirac fermions,
which are doubly degenerate elementary excitations with linear
dispersion49,50. In these systems, the reliable switching of the
staggered magnetization by means of current-induced torques has
been demonstrated very recently8. In analogy to the concept of
mixed Weyl semimetals presented here, we expect that the notion
of mixed Dirac semimetals in a combined phase space of crystal
momentum and direction of the staggered magnetization vector
will prove fruitful in understanding the microscopic origin of
SOTs in insulating AFMs. Following the very same interpretation
that we formulated here for ferromagnets, monopoles in the
electronic structure of AFMs can be anticipated to constitute
prominent sources or sinks of the corresponding general non-
Abelian Berry curvature, whose mixed band diagonal compo-
nents correspond to the sublattice-dependent antidamping SOT,
in analogy to the spin Berry curvature for quantum spin Hall
insulators and Dirac semimetals51–53. Correspondingly, exploit-
ing the principles of electronic structure engineering for topolo-
gical properties depending on the staggered magnetization could
result in an advanced understanding and utilization of pro-
nounced magnetoelectric response in insulating AFMs.

Methods
Berry phase expressions for torkance and spiralization. In order to characterize
the antidamping SOTs, we evaluate within linear response the torkance13

τij ¼
2e
Nk

êi �
X

occ

kn

m̂ ´ Im ∂m̂uknj∂kjukn
� �� 	

; ð2Þ

where Nk is the number of k-points, and e> 0 denotes the elementary positive
charge. Similarly, the spiralization13 is obtained as

Dij ¼
êi

NkV
�
X

occ

kn

m̂ ´ Im ∂m̂uknjhknj∂kjukn
� �� 	

; ð3Þ

where hkn=Hk + εkn − 2εF, Hk is the lattice-periodic Hamiltonian with eigen-
energies εkn, εF is the Fermi level, and V is the unit cell volume.

Tight-binding calculations. To arrive at the model Hamiltonian (1), the model in
ref. 35 has been generalized to account for arbitrary magnetization directions m̂ and
the nonlocal exchange interaction. We obtained a 4 × 4 matrix representation of
the resulting Hamiltonian on the bipartite lattice of graphene by introducing four
orthonormal basis states |Nα〉 that describe electrons with spin α= {↑, ↓} on the
sublattice N= {A, B}. Using Fourier transformations, we transformed this matrix to
a representation H(k) in momentum space, which was subsequently diagonalized
at every k-point to access the electronic and topological properties. The model
parameters tso= 0.3 t, λ = 0.1 t, and λnl= 0.4 t were employed in this work. We
chose the magnetization direction as m̂= (sin θ, 0, cos θ) for a direct comparison
between the model and the first-principles calculations.

First-principles electronic structure calculations. Using the full-potential line-
arized augmented plane-wave code FLEUR (see www.flapw.de), we performed self-
consistent density functional theory calculations of the electronic structure of (1)
graphene decorated with W adatoms in 4 × 4 geometry, and (2) a semi-
hydrogenated Bi(111) bilayer. The structural parameters of refs. 39, 43 were
assumed in the respective cases. While we used here the PBE (Perdew–Burke-
Ernzerhof) exchange and correlation functional, other choices led to the same
mixed Weyl points but at slightly different positions. The effect of spin–orbit
coupling was treated within the perturbative second-variation scheme.

Starting from the converged charge density, the Kohn–Sham equations were
solved on an equidistant mesh of 8 × 8 k-points (6 × 6 in case (1)) for 8 different
magnetization directions m̂= (sin θ, 0, cos θ), where the angle θ covers the unit
circle once. Based on the resulting wave-function information in the composite
phase space, we constructed a single set of higher-dimensional Wannier
functions54 (HDWFs) for each of the systems by employing our extension of the
wannier90 code55. In case (1), we generated 274 HDWFs from 360 bands with the
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frozen window up to 4 eV above the Fermi level, and in the case (2), we extracted
from 28 bands 14 HDWFs for a frozen window that extends to 2 eV above the
Fermi energy.

We used the Wannier interpolation56,57 that we generalized to treat crystal
momentum and magnetization direction on an equal footing54 in order to evaluate
the Berry curvatures Ωkk and Ωm̂k . Taking into account the above parametrization
of the magnetization direction by θ, we were thereby able to access efficiently the
anomalous Hall conductivity σij, the torkance τyj, and the spiralization Dyj.
Convergence of these quantities was achieved using 1024 × 1024 k-points in
the Brillouin zone. We obtained the mixed Chern number ZðkyÞ ¼
1=ð2πÞ

R

2Im
Pocc

n ∂θukn ∂kxuknjh idθdkx by integrating the mixed Berry curvature on
a uniform mesh of 1024 kx-values and 512 angles θ in [0, 2π].

Data availability. The tight-binding code and the data that support the findings of
this study are available from the corresponding authors on request.
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