001     840027
005     20240313094929.0
037 _ _ |a FZJ-2017-07593
041 _ _ |a English
100 1 _ |a Sprenger, Julia
|0 P:(DE-Juel1)161295
|b 0
|e Corresponding author
111 2 _ |a The 47th annual meeting of the Society for Neuroscience
|g SfN 2017
|c Washington DC
|d 2017-11-11 - 2017-11-15
|w USA
245 _ _ |a Management of data and metadata - an exemplary electrophysiological workflow for collaborative data analysis
260 _ _ |c 2017
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1512122072_28147
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The complexity of neuroscientific experiments and their analysis has grown to a degree where special effort andattention is required to guarantee their reproducibility. In addition, collaborations across different laboratoriesand countries are becoming a standard work setting, which increases the need for comprehensivedocumentation of data and metadata, and explicit, formal descriptions of the data analysis process. Theavailability of software tools that support scientists in the various steps of this process is therefore indispensable[Denker and Grün (2016) In: Brain-Inspired Computing: Brain Comp 2015, Springer]. Moreover, it is necessary toestablish the workflows that link the various tools, and to develop simple interfaces for them.Here we demonstrate how such a reproducible, structured, and comprehensible workflow for anelectrophysiological experiment, covering the preparation, annotation and analysis data, can be set up in acollaborative environment by the combination of multiple state-of-the-art open-source projects. The workflowfeatures the Electrophysiology Analysis Toolkit (Elephant), which represents the central analysis resourceoffering methods ranging from the analysis of ensemble spike data to population signals, such as local fieldpotentials [http://neuralensemble.org/elephant/]. Elephant is based on the generic standardized datarepresentation for electrophysiological data provided by the Neo library [Garcia et al. (2014) Front Neuroinf8:10]. In addition, Neo is able to interface with a range of data formats commonly used in electrophysiology. Theopen metadata Markup Language (odML) is used as the hierarchical structure to store metadata related toelectrophysiological experiments [Grewe et al. (2011) Front Neuroinf 5:16]. Furthermore, odMLtables extendsthe accessibility of odML by providing an interface to a tabular metadata representation, e.g., using Excel[https://github.com/INM-6/python-odmltables]. Finally, NIX is a newly developed scheme designed to combineelectrophysiological data and metadata in a single, standardized format [https://github.com/G-Node/nix], andlinks the Neo and odML data models. We discuss multiple mechanisms that allow to describe the workflow itself,and show how it may be implemented, e.g., using the Collaboratory of the Human Brain Project[https://collab.humanbrainproject.eu]. While focusing on electrophysiology, many concepts of this workflow arealso transferable to different types of experimental environments.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|x 0
|f POF III
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|x 1
|f SMHB
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|x 2
|f H2020-Adhoc-2014-20
536 _ _ |a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)
|0 G:(GEPRIS)238707842
|c 238707842
|x 3
536 _ _ |a DFG project 237833830 - Optogenetische Analyse der für kognitive Fähigkeiten zuständigen präfrontal-hippokampalen Netzwerke in der Entwicklung (237833830)
|0 G:(GEPRIS)237833830
|c 237833830
|x 4
536 _ _ |a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)
|0 G:(GEPRIS)238707842
|c 238707842
|x 5
700 1 _ |a Yegenoglu, Alper
|0 P:(DE-Juel1)161462
|b 1
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 2
700 1 _ |a Denker, Michael
|0 P:(DE-Juel1)144807
|b 3
|e Corresponding author
|u fzj
909 C O |o oai:juser.fz-juelich.de:840027
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161462
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144168
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144807
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 0
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 2
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21