000840032 001__ 840032
000840032 005__ 20240712113051.0
000840032 0247_ $$2doi$$a10.1002/cssc.201600369
000840032 0247_ $$2ISSN$$a1864-5631
000840032 0247_ $$2ISSN$$a1864-564X
000840032 0247_ $$2pmid$$apmid:27239982
000840032 0247_ $$2WOS$$aWOS:000380336800021
000840032 0247_ $$2altmetric$$aaltmetric:8765776
000840032 037__ $$aFZJ-2017-07598
000840032 041__ $$aEnglish
000840032 082__ $$a540
000840032 1001_ $$0P:(DE-HGF)0$$aBrox, Sebastian$$b0
000840032 245__ $$aAlternative Single-Solvent Electrolytes Based on Cyanoesters for Safer Lithium-Ion Batteries
000840032 260__ $$aWeinheim$$bWiley-VCH$$c2016
000840032 3367_ $$2DRIVER$$aarticle
000840032 3367_ $$2DataCite$$aOutput Types/Journal article
000840032 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511186498_32655
000840032 3367_ $$2BibTeX$$aARTICLE
000840032 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840032 3367_ $$00$$2EndNote$$aJournal Article
000840032 520__ $$aTo identify alternative single-solvent-based electrolytes for application in lithium-ion batteries (LIBs), adequate computational methods were applied to screen specified physicochemical and electrochemical properties of new cyanoester-based compounds. Out of 2747 possible target compounds, two promising candidates and two structurally equivalent components were chosen. A constructive selection process including evaluation of basic physicochemical properties as well assessing the compatibility towards graphitic anodes was initiated to identify the most promising candidates. With addition of a film-forming additive in a low concentration, the most promising candidate showed an adequate long-term cycling stability with LiNi1/3Mn1/3Co1/3O2 [NMC(111)] in a full-cell setup using graphite as anode material. The main advantages of the new electrolyte formulation are related to its good thermal behavior, especially with regard to safety in combination with satisfying electrochemical performance.
000840032 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000840032 588__ $$aDataset connected to CrossRef
000840032 7001_ $$0P:(DE-HGF)0$$aRöser, Stephan$$b1$$eCorresponding author
000840032 7001_ $$0P:(DE-HGF)0$$aHusch, Tamara$$b2
000840032 7001_ $$0P:(DE-HGF)0$$aHildebrand, Stephan$$b3
000840032 7001_ $$0P:(DE-HGF)0$$aFromm, Olga$$b4
000840032 7001_ $$0P:(DE-HGF)0$$aKorth, Martin$$b5$$eCorresponding author
000840032 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6$$ufzj
000840032 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b7$$ufzj
000840032 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.201600369$$gVol. 9, no. 13, p. 1704 - 1711$$n13$$p1704 - 1711$$tChemSusChem$$v9$$x1864-5631$$y2016
000840032 8564_ $$uhttps://juser.fz-juelich.de/record/840032/files/Brox_et_al-2016-ChemSusChem.pdf$$yRestricted
000840032 8564_ $$uhttps://juser.fz-juelich.de/record/840032/files/Brox_et_al-2016-ChemSusChem.gif?subformat=icon$$xicon$$yRestricted
000840032 8564_ $$uhttps://juser.fz-juelich.de/record/840032/files/Brox_et_al-2016-ChemSusChem.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840032 8564_ $$uhttps://juser.fz-juelich.de/record/840032/files/Brox_et_al-2016-ChemSusChem.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840032 8564_ $$uhttps://juser.fz-juelich.de/record/840032/files/Brox_et_al-2016-ChemSusChem.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840032 8564_ $$uhttps://juser.fz-juelich.de/record/840032/files/Brox_et_al-2016-ChemSusChem.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840032 909CO $$ooai:juser.fz-juelich.de:840032$$pVDB
000840032 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
000840032 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b7$$kFZJ
000840032 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000840032 9141_ $$y2017
000840032 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2015
000840032 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840032 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840032 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840032 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840032 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840032 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840032 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840032 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2015
000840032 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000840032 980__ $$ajournal
000840032 980__ $$aVDB
000840032 980__ $$aI:(DE-Juel1)IEK-12-20141217
000840032 980__ $$aUNRESTRICTED
000840032 981__ $$aI:(DE-Juel1)IMD-4-20141217