000840033 001__ 840033
000840033 005__ 20240712113051.0
000840033 0247_ $$2doi$$a10.1016/j.electacta.2015.10.002
000840033 0247_ $$2ISSN$$a0013-4686
000840033 0247_ $$2ISSN$$a1873-3859
000840033 0247_ $$2WOS$$aWOS:000366016900052
000840033 037__ $$aFZJ-2017-07599
000840033 041__ $$aEnglish
000840033 082__ $$a540
000840033 1001_ $$0P:(DE-HGF)0$$aGallus, Dennis Roman$$b0$$eCorresponding author
000840033 245__ $$aNew insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value
000840033 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015
000840033 3367_ $$2DRIVER$$aarticle
000840033 3367_ $$2DataCite$$aOutput Types/Journal article
000840033 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511186657_32654
000840033 3367_ $$2BibTeX$$aARTICLE
000840033 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840033 3367_ $$00$$2EndNote$$aJournal Article
000840033 520__ $$aIn pursuit of higher energy density in lithium-ion batteries (LIBs), a most promising approach focuses on cathode materials that operate at higher potentials and exhibit even higher specific charges than present LIB cathodes charged up to only 3.8 to 4.3 V vs. Li/Li+. To enable a high-voltage (HV) application of the cathode, the “by-materials”, in particular the electrolyte components have to be either thermodynamically or kinetically stable. For this reason, the stability of the electrolyte components towards oxidation, in particular, depending on their HOMO energy levels, is crucial. The theoretical calculation of molecular orbital energies is a helpful and commonly used tool to predict electrochemical stability. Earlier studies demonstrated strong correlation between the HOMO energy and the pKa value, as both depend on electron affinity. Here we report on the first study referring to a pKa value based selection procedure on development of new electrolyte components for the application in lithium-ion batteries. The identified trimethylsilyl(TMS)-based additives, which are known to scavenge HF and show sufficient oxidation stability, enable the application of LiNi1/3Co1/3Mn1/3O2 (NCM) at an increased upper cut-off potential of 4.6 V vs. Li/Li+ without severe degradation, leading to a 50% higher energy density. The use of pKa values is a simple, but highly effective methodology to select appropriate electrolyte components and thus helps to identify functional electrolytes beyond the typical trial and error approach or time-consuming theoretical calculations.
000840033 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000840033 588__ $$aDataset connected to CrossRef
000840033 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b1
000840033 7001_ $$0P:(DE-HGF)0$$aWiemers-Meyer, Simon$$b2
000840033 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$eCorresponding author$$ufzj
000840033 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b4$$ufzj
000840033 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2015.10.002$$gVol. 184, p. 410 - 416$$p410 - 416$$tElectrochimica acta$$v184$$x0013-4686$$y2015
000840033 8564_ $$uhttps://juser.fz-juelich.de/record/840033/files/1-s2.0-S0013468615305831-main.pdf$$yRestricted
000840033 8564_ $$uhttps://juser.fz-juelich.de/record/840033/files/1-s2.0-S0013468615305831-main.gif?subformat=icon$$xicon$$yRestricted
000840033 8564_ $$uhttps://juser.fz-juelich.de/record/840033/files/1-s2.0-S0013468615305831-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840033 8564_ $$uhttps://juser.fz-juelich.de/record/840033/files/1-s2.0-S0013468615305831-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840033 8564_ $$uhttps://juser.fz-juelich.de/record/840033/files/1-s2.0-S0013468615305831-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840033 8564_ $$uhttps://juser.fz-juelich.de/record/840033/files/1-s2.0-S0013468615305831-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840033 909CO $$ooai:juser.fz-juelich.de:840033$$pVDB
000840033 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000840033 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b4$$kFZJ
000840033 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000840033 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840033 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2015
000840033 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840033 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840033 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840033 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840033 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840033 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840033 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840033 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840033 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840033 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840033 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840033 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000840033 980__ $$ajournal
000840033 980__ $$aVDB
000840033 980__ $$aI:(DE-Juel1)IEK-12-20141217
000840033 980__ $$aUNRESTRICTED
000840033 981__ $$aI:(DE-Juel1)IMD-4-20141217