001     840033
005     20240712113051.0
024 7 _ |a 10.1016/j.electacta.2015.10.002
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a WOS:000366016900052
|2 WOS
037 _ _ |a FZJ-2017-07599
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Gallus, Dennis Roman
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value
260 _ _ |a New York, NY [u.a.]
|c 2015
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511186657_32654
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In pursuit of higher energy density in lithium-ion batteries (LIBs), a most promising approach focuses on cathode materials that operate at higher potentials and exhibit even higher specific charges than present LIB cathodes charged up to only 3.8 to 4.3 V vs. Li/Li+. To enable a high-voltage (HV) application of the cathode, the “by-materials”, in particular the electrolyte components have to be either thermodynamically or kinetically stable. For this reason, the stability of the electrolyte components towards oxidation, in particular, depending on their HOMO energy levels, is crucial. The theoretical calculation of molecular orbital energies is a helpful and commonly used tool to predict electrochemical stability. Earlier studies demonstrated strong correlation between the HOMO energy and the pKa value, as both depend on electron affinity. Here we report on the first study referring to a pKa value based selection procedure on development of new electrolyte components for the application in lithium-ion batteries. The identified trimethylsilyl(TMS)-based additives, which are known to scavenge HF and show sufficient oxidation stability, enable the application of LiNi1/3Co1/3Mn1/3O2 (NCM) at an increased upper cut-off potential of 4.6 V vs. Li/Li+ without severe degradation, leading to a 50% higher energy density. The use of pKa values is a simple, but highly effective methodology to select appropriate electrolyte components and thus helps to identify functional electrolytes beyond the typical trial and error approach or time-consuming theoretical calculations.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wagner, Ralf
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wiemers-Meyer, Simon
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 4
|u fzj
773 _ _ |a 10.1016/j.electacta.2015.10.002
|g Vol. 184, p. 410 - 416
|0 PERI:(DE-600)1483548-4
|p 410 - 416
|t Electrochimica acta
|v 184
|y 2015
|x 0013-4686
856 4 _ |u https://juser.fz-juelich.de/record/840033/files/1-s2.0-S0013468615305831-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840033/files/1-s2.0-S0013468615305831-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840033/files/1-s2.0-S0013468615305831-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840033/files/1-s2.0-S0013468615305831-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840033/files/1-s2.0-S0013468615305831-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840033/files/1-s2.0-S0013468615305831-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840033
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171204
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21