000840034 001__ 840034
000840034 005__ 20210129231727.0
000840034 0247_ $$2doi$$a10.1093/treephys/tpx113
000840034 0247_ $$2ISSN$$a0829-318X
000840034 0247_ $$2ISSN$$a1758-4469
000840034 0247_ $$2pmid$$apmid:29036462
000840034 0247_ $$2WOS$$aWOS:000422839200006
000840034 0247_ $$2altmetric$$aaltmetric:27547306
000840034 037__ $$aFZJ-2017-07600
000840034 041__ $$aEnglish
000840034 082__ $$a630
000840034 1001_ $$0P:(DE-HGF)0$$aKleiber, Anita$$b0
000840034 245__ $$aDrought effects on root and needle terpenoid content of a coastal and an interior Douglas fir provenance
000840034 260__ $$aVictoria, BC$$bHeron$$c2017
000840034 3367_ $$2DRIVER$$aarticle
000840034 3367_ $$2DataCite$$aOutput Types/Journal article
000840034 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1513694714_27848
000840034 3367_ $$2BibTeX$$aARTICLE
000840034 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840034 3367_ $$00$$2EndNote$$aJournal Article
000840034 520__ $$aDouglas fir (Pseudotsuga menziesii) is a conifer species that stores large amounts of terpenoids, mainly monoterpenoids in resin ducts of various tissues. The effects of drought on stored leaf terpenoid concentrations in trees are scarcely studied and published data are partially controversial, since reduced, unaffected or elevated terpenoid contents due to drought have been reported. Even less is known on the effect of drought on root terpenoids. In the present work, we investigated the effect of reduced water availability on the terpenoid content in roots and needles of Douglas fir seedlings. Two contrasting Douglas fir provenances were studied: an interior provenance (var. glauca) with assumed higher drought resistance, and a coastal provenance (var. menziesii) with assumed lower drought resistance. We tested the hypothesis that both provenances show specific patterns of stored terpenoids and that the patterns will change in response to drought in both, needles and roots. We further expected stronger changes in the less drought tolerant coastal provenance. For this purpose, we performed an experiment under controlled conditions, in which the trees were exposed to moderate and severe drought stress. According to our expectations, the study revealed clear provenance-specific terpenoid patterns in needles. However, such patterns were not detected in the roots. Drought slightly increased the needle terpenoid contents of the coastal but not of the interior provenance. We also observed increased terpenoid abundance mainly in roots of the moderately stressed coastal provenance. Overall, from the observed provenance-specific reactions with increased terpenoid levels in trees of the coastal origin in response to drought, we conclude on functions of terpenoids for abiotic stress tolerance that might be fulfilled by other, constitutively expressed mechanisms in drought-adapted interior provenances.
000840034 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000840034 588__ $$aDataset connected to CrossRef
000840034 7001_ $$0P:(DE-HGF)0$$aDuan, Qiuxiao$$b1
000840034 7001_ $$0P:(DE-HGF)0$$aJansen, Kirstin$$b2
000840034 7001_ $$0P:(DE-Juel1)168454$$aJunker, Laura$$b3$$ufzj
000840034 7001_ $$0P:(DE-HGF)0$$aKammerer, Bernd$$b4
000840034 7001_ $$0P:(DE-HGF)0$$aRennenberg, Heinz$$b5
000840034 7001_ $$0P:(DE-HGF)0$$aEnsminger, Ingo$$b6
000840034 7001_ $$0P:(DE-HGF)0$$aGessler, Arthur$$b7
000840034 7001_ $$0P:(DE-HGF)0$$aKreuzwieser, Jürgen$$b8$$eCorresponding author
000840034 773__ $$0PERI:(DE-600)1473475-8$$a10.1093/treephys/tpx113$$gp. 1 - 11$$n12$$p1648–1658$$tTree physiology$$v37$$x1758-4469$$y2017
000840034 8564_ $$uhttps://juser.fz-juelich.de/record/840034/files/tpx113.pdf$$yRestricted
000840034 8564_ $$uhttps://juser.fz-juelich.de/record/840034/files/tpx113.gif?subformat=icon$$xicon$$yRestricted
000840034 8564_ $$uhttps://juser.fz-juelich.de/record/840034/files/tpx113.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840034 8564_ $$uhttps://juser.fz-juelich.de/record/840034/files/tpx113.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840034 8564_ $$uhttps://juser.fz-juelich.de/record/840034/files/tpx113.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840034 8564_ $$uhttps://juser.fz-juelich.de/record/840034/files/tpx113.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840034 909CO $$ooai:juser.fz-juelich.de:840034$$pVDB
000840034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168454$$aForschungszentrum Jülich$$b3$$kFZJ
000840034 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000840034 9141_ $$y2017
000840034 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000840034 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840034 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840034 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840034 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTREE PHYSIOL : 2015
000840034 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840034 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840034 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840034 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840034 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840034 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840034 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840034 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000840034 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000840034 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840034 920__ $$lyes
000840034 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000840034 980__ $$ajournal
000840034 980__ $$aVDB
000840034 980__ $$aI:(DE-Juel1)IBG-2-20101118
000840034 980__ $$aUNRESTRICTED