000840037 001__ 840037
000840037 005__ 20240712113051.0
000840037 0247_ $$2doi$$a10.1063/1.4968393
000840037 0247_ $$2ISSN$$a0021-9606
000840037 0247_ $$2ISSN$$a1089-7690
000840037 0247_ $$2pmid$$apmid:27908097
000840037 0247_ $$2WOS$$aWOS:000390118200034
000840037 0247_ $$2Handle$$a2128/18947
000840037 037__ $$aFZJ-2017-07603
000840037 041__ $$aEnglish
000840037 082__ $$a540
000840037 1001_ $$0P:(DE-Juel1)167371$$aLesch, Volker$$b0$$eCorresponding author
000840037 245__ $$aMolecular dynamics analysis of the effect of electronic polarization on the structure and single-particle dynamics of mixtures of ionic liquids and lithium salts
000840037 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2016
000840037 3367_ $$2DRIVER$$aarticle
000840037 3367_ $$2DataCite$$aOutput Types/Journal article
000840037 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1529385428_32178
000840037 3367_ $$2BibTeX$$aARTICLE
000840037 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840037 3367_ $$00$$2EndNote$$aJournal Article
000840037 520__ $$aWe report a molecular dynamics study on the effect of electronic polarization on the structure and single-particle dynamics of mixtures of the aprotic ionic liquid 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide ([EMIM][TFSI]) doped with a lithium salt with the same anion at 298 K and 1 bar. In particular, we analyze the effect of electron density fluctuations on radial distribution functions, velocity autocorrelation functions, cage correlation functions, mean-squared displacements, and vibrational densities of states, comparing the predictions of the quantum-chemistry-based Atomistic Polarizable Potential for Liquids, Electrolytes, & Polymers (APPLE&P) with those of its nonpolarizable version and those of the standard non-polarizable Optimized Potentials for Liquid Simulations-All Atom (OPLS-AA). We found that the structure of the mixture is scarcely modified by the fluctuations in electron charge of their constituents, but their transport properties are indeed quite drastically changed, with larger mobilities being predicted for the different species in the bulk mixtures with the polarizable force field. Specifically, the mean-squared displacements are larger for the polarizable potentials at identical time intervals and the intermediate subdiffusive plateaus are greatly reduced, so the transition to the diffusive regime takes place much earlier than in the non-polarizable media. Moreover, the correlations of the added cations inside their cages are weakened out earlier and their vibrational densities of states are slightly red-shifted, reflecting the weakening effect of the electronic polarization on the Coulomb coupling in these dense ionic media. The comparison of OPLS-AA with non-polarizable APPLE&P indicates that adding polarization to OPLS-AA is not sufficient to achieve results close to experiments.
000840037 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000840037 588__ $$aDataset connected to CrossRef
000840037 7001_ $$00000-0001-9861-8076$$aMontes-Campos, Hadrián$$b1
000840037 7001_ $$0P:(DE-HGF)0$$aMéndez-Morales, Trinidad$$b2
000840037 7001_ $$0P:(DE-HGF)0$$aGallego, Luis Javier$$b3
000840037 7001_ $$0P:(DE-HGF)0$$aHeuer, Andreas$$b4
000840037 7001_ $$00000-0002-2167-5096$$aSchröder, Christian$$b5
000840037 7001_ $$0P:(DE-HGF)0$$aVarela, Luis M.$$b6$$eCorresponding author
000840037 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4968393$$gVol. 145, no. 20, p. 204507 -$$n20$$p204507 -$$tThe journal of chemical physics$$v145$$x1089-7690$$y2016
000840037 8564_ $$uhttps://juser.fz-juelich.de/record/840037/files/1.4968393.pdf$$yOpenAccess
000840037 8564_ $$uhttps://juser.fz-juelich.de/record/840037/files/1.4968393.gif?subformat=icon$$xicon$$yOpenAccess
000840037 8564_ $$uhttps://juser.fz-juelich.de/record/840037/files/1.4968393.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840037 8564_ $$uhttps://juser.fz-juelich.de/record/840037/files/1.4968393.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840037 8564_ $$uhttps://juser.fz-juelich.de/record/840037/files/1.4968393.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840037 909CO $$ooai:juser.fz-juelich.de:840037$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000840037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167371$$aForschungszentrum Jülich$$b0$$kFZJ
000840037 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000840037 9141_ $$y2017
000840037 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840037 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840037 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2015
000840037 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840037 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840037 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840037 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840037 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840037 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840037 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840037 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840037 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840037 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840037 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840037 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000840037 9801_ $$aFullTexts
000840037 980__ $$ajournal
000840037 980__ $$aVDB
000840037 980__ $$aUNRESTRICTED
000840037 980__ $$aI:(DE-Juel1)IEK-12-20141217
000840037 981__ $$aI:(DE-Juel1)IMD-4-20141217