000840038 001__ 840038
000840038 005__ 20240712113052.0
000840038 0247_ $$2doi$$a10.1002/celc.201600062
000840038 0247_ $$2WOS$$aWOS:000380045400013
000840038 0247_ $$2altmetric$$aaltmetric:6390478
000840038 037__ $$aFZJ-2017-07604
000840038 041__ $$aEnglish
000840038 082__ $$a540
000840038 1001_ $$0P:(DE-HGF)0$$aLiu, Haidong$$b0
000840038 245__ $$aHierarchical Ternary MoO2/MoS2/Heteroatom-Doped Carbon Hybrid Materials for High-Performance Lithium-Ion Storage
000840038 260__ $$aWeinheim$$bWiley-VCH$$c2016
000840038 3367_ $$2DRIVER$$aarticle
000840038 3367_ $$2DataCite$$aOutput Types/Journal article
000840038 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511187066_32656
000840038 3367_ $$2BibTeX$$aARTICLE
000840038 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840038 3367_ $$00$$2EndNote$$aJournal Article
000840038 520__ $$aThe synthesis and electrochemical lithium-ion storage behavior of hierarchical MoO2/MoS2/heteroatom-doped carbon (MoO2/MoS2/HD-C) ternary hybrid have been studied. This ternary hybrid is composed of ultrafine MoO2 nanowires and single/few-layer MoS2 encapsulated by heteroatom-doped carbon, constituting secondary cauliflower-like microspheres. The synthesis is achieved through the synergistic interplay of a polymer and an ionic liquid as structure-directing agents and carbon sources, using a solvothermal reaction followed by a simple thermal treatment. In this unique architecture, each component synergistically acts with a specific purpose. The HD-C matrix with abundant defects and vacancies provides fast electronic conduction as well as interfacial storage, and buffers the volume changes during charging/discharging processes. The ultrasmall dimensions of both MoO2 nanowires and single/few-layered MoS2 components enable rapid Li+ transport in all directions, which is of great benefit to the reversibility of “conversion” reactions. The hierarchical secondary structures assure the robust stability upon long-term cycling. The ternary hybrid material exhibits enhanced Li+-storage performance as well as reversible capacity, rate capability, and cycling stability. A high reversible specific capacity of 1147 mA h g−1 is delivered at 50 mA g−1 together with excellent cycling stability, and 841 mA h g−1 can be retained after 1000 cycles at 500 mA g−1.
000840038 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000840038 588__ $$aDataset connected to CrossRef
000840038 7001_ $$0P:(DE-HGF)0$$aHu, Huating$$b1
000840038 7001_ $$0P:(DE-HGF)0$$aWang, Jun$$b2
000840038 7001_ $$0P:(DE-HGF)0$$aNiehoff, Philip$$b3
000840038 7001_ $$0P:(DE-Juel1)169319$$aHe, Xin$$b4$$ufzj
000840038 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie-Elisée$$b5$$ufzj
000840038 7001_ $$0P:(DE-HGF)0$$aEder, Dominik$$b6
000840038 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b7$$ufzj
000840038 7001_ $$0P:(DE-HGF)0$$aLi, Jie$$b8$$eCorresponding author
000840038 773__ $$0PERI:(DE-600)2724978-5$$a10.1002/celc.201600062$$gVol. 3, no. 6, p. 922 - 932$$n6$$p922 - 932$$tChemElectroChem$$v3$$x2196-0216$$y2016
000840038 8564_ $$uhttps://juser.fz-juelich.de/record/840038/files/Liu_et_al-2016-ChemElectroChem.pdf$$yRestricted
000840038 8564_ $$uhttps://juser.fz-juelich.de/record/840038/files/Liu_et_al-2016-ChemElectroChem.gif?subformat=icon$$xicon$$yRestricted
000840038 8564_ $$uhttps://juser.fz-juelich.de/record/840038/files/Liu_et_al-2016-ChemElectroChem.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840038 8564_ $$uhttps://juser.fz-juelich.de/record/840038/files/Liu_et_al-2016-ChemElectroChem.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840038 8564_ $$uhttps://juser.fz-juelich.de/record/840038/files/Liu_et_al-2016-ChemElectroChem.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840038 8564_ $$uhttps://juser.fz-juelich.de/record/840038/files/Liu_et_al-2016-ChemElectroChem.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840038 909CO $$ooai:juser.fz-juelich.de:840038$$pVDB
000840038 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169319$$aForschungszentrum Jülich$$b4$$kFZJ
000840038 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166311$$aForschungszentrum Jülich$$b5$$kFZJ
000840038 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ
000840038 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000840038 9141_ $$y2017
000840038 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMELECTROCHEM : 2015
000840038 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840038 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840038 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840038 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840038 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840038 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840038 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000840038 980__ $$ajournal
000840038 980__ $$aVDB
000840038 980__ $$aI:(DE-Juel1)IEK-12-20141217
000840038 980__ $$aUNRESTRICTED
000840038 981__ $$aI:(DE-Juel1)IMD-4-20141217