001     840038
005     20240712113052.0
024 7 _ |a 10.1002/celc.201600062
|2 doi
024 7 _ |a WOS:000380045400013
|2 WOS
024 7 _ |a altmetric:6390478
|2 altmetric
037 _ _ |a FZJ-2017-07604
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Liu, Haidong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Hierarchical Ternary MoO2/MoS2/Heteroatom-Doped Carbon Hybrid Materials for High-Performance Lithium-Ion Storage
260 _ _ |a Weinheim
|c 2016
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511187066_32656
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The synthesis and electrochemical lithium-ion storage behavior of hierarchical MoO2/MoS2/heteroatom-doped carbon (MoO2/MoS2/HD-C) ternary hybrid have been studied. This ternary hybrid is composed of ultrafine MoO2 nanowires and single/few-layer MoS2 encapsulated by heteroatom-doped carbon, constituting secondary cauliflower-like microspheres. The synthesis is achieved through the synergistic interplay of a polymer and an ionic liquid as structure-directing agents and carbon sources, using a solvothermal reaction followed by a simple thermal treatment. In this unique architecture, each component synergistically acts with a specific purpose. The HD-C matrix with abundant defects and vacancies provides fast electronic conduction as well as interfacial storage, and buffers the volume changes during charging/discharging processes. The ultrasmall dimensions of both MoO2 nanowires and single/few-layered MoS2 components enable rapid Li+ transport in all directions, which is of great benefit to the reversibility of “conversion” reactions. The hierarchical secondary structures assure the robust stability upon long-term cycling. The ternary hybrid material exhibits enhanced Li+-storage performance as well as reversible capacity, rate capability, and cycling stability. A high reversible specific capacity of 1147 mA h g−1 is delivered at 50 mA g−1 together with excellent cycling stability, and 841 mA h g−1 can be retained after 1000 cycles at 500 mA g−1.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hu, Huating
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wang, Jun
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Niehoff, Philip
|0 P:(DE-HGF)0
|b 3
700 1 _ |a He, Xin
|0 P:(DE-Juel1)169319
|b 4
|u fzj
700 1 _ |a Paillard, Elie-Elisée
|0 P:(DE-Juel1)166311
|b 5
|u fzj
700 1 _ |a Eder, Dominik
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 7
|u fzj
700 1 _ |a Li, Jie
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1002/celc.201600062
|g Vol. 3, no. 6, p. 922 - 932
|0 PERI:(DE-600)2724978-5
|n 6
|p 922 - 932
|t ChemElectroChem
|v 3
|y 2016
|x 2196-0216
856 4 _ |u https://juser.fz-juelich.de/record/840038/files/Liu_et_al-2016-ChemElectroChem.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840038/files/Liu_et_al-2016-ChemElectroChem.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840038/files/Liu_et_al-2016-ChemElectroChem.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840038/files/Liu_et_al-2016-ChemElectroChem.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840038/files/Liu_et_al-2016-ChemElectroChem.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840038/files/Liu_et_al-2016-ChemElectroChem.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840038
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169319
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166311
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMELECTROCHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21