000840039 001__ 840039
000840039 005__ 20240712113052.0
000840039 0247_ $$2doi$$a10.1007/s10800-016-0924-6
000840039 0247_ $$2ISSN$$a0021-891X
000840039 0247_ $$2ISSN$$a1572-8838
000840039 0247_ $$2WOS$$aWOS:000371469400008
000840039 037__ $$aFZJ-2017-07605
000840039 041__ $$aEnglish
000840039 082__ $$a540
000840039 1001_ $$0P:(DE-HGF)0$$aMurmann, Patrick$$b0$$eCorresponding author
000840039 245__ $$aInfluence of lithium-cyclo-difluoromethane-1,1-bis(sulfonyl)imide as electrolyte additive on the reversibility of lithium metal batteries
000840039 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2016
000840039 3367_ $$2DRIVER$$aarticle
000840039 3367_ $$2DataCite$$aOutput Types/Journal article
000840039 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511188794_32655
000840039 3367_ $$2BibTeX$$aARTICLE
000840039 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840039 3367_ $$00$$2EndNote$$aJournal Article
000840039 520__ $$aElectrolyte solutions containing lithium-cyclo-difluoromethane-1,1-bis(sulfonyl)imide (LiDMSI) as an additive were specifically designed for measurements in lithium plating-stripping model experiments on copper electrodes. LiDMSI was implemented into two different electrolyte solutions. The first electrolyte setup consisted of a 1 M solution of LiTFSI in PC as an electrolyte which is known to show a comparably limited performance for reversible Li deposition. The second setup was comprised 1 M LiAsF6 in 1,3-dioxolane as the base electrolyte which depicts a well-tested performance for lithium deposition–dissolution. The addition of LiDMSI yielded significantly improved results in regard to Coulombic efficiencies and cycling stability in both electrolyte compositions. Furthermore, it negated the formation of high surface area, e.g., dendritic lithium, which depicts the main source for the limited safety of rechargeable lithium metal batteries. In the case of the PC-based electrolyte system, the LiDMSI-containing electrolyte illustrates a slightly lowered over-potential on the copper substrate, while for the dioxolane-based setup the over-potentials were almost completely equal. In order to compare the morphologies of the lithium deposits, SEM images were utilized.
000840039 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000840039 588__ $$aDataset connected to CrossRef
000840039 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b1
000840039 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b2$$ufzj
000840039 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$ufzj
000840039 773__ $$0PERI:(DE-600)1491094-9$$a10.1007/s10800-016-0924-6$$gVol. 46, no. 3, p. 339 - 348$$n3$$p339 - 348$$tJournal of applied electrochemistry$$v46$$x1572-8838$$y2016
000840039 8564_ $$uhttps://juser.fz-juelich.de/record/840039/files/s10800-016-0924-6.pdf$$yRestricted
000840039 8564_ $$uhttps://juser.fz-juelich.de/record/840039/files/s10800-016-0924-6.gif?subformat=icon$$xicon$$yRestricted
000840039 8564_ $$uhttps://juser.fz-juelich.de/record/840039/files/s10800-016-0924-6.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840039 8564_ $$uhttps://juser.fz-juelich.de/record/840039/files/s10800-016-0924-6.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840039 8564_ $$uhttps://juser.fz-juelich.de/record/840039/files/s10800-016-0924-6.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840039 8564_ $$uhttps://juser.fz-juelich.de/record/840039/files/s10800-016-0924-6.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840039 909CO $$ooai:juser.fz-juelich.de:840039$$pVDB
000840039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b2$$kFZJ
000840039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000840039 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000840039 9141_ $$y2017
000840039 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840039 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL ELECTROCHEM : 2015
000840039 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840039 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840039 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840039 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840039 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840039 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840039 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840039 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840039 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840039 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840039 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000840039 980__ $$ajournal
000840039 980__ $$aVDB
000840039 980__ $$aI:(DE-Juel1)IEK-12-20141217
000840039 980__ $$aUNRESTRICTED
000840039 981__ $$aI:(DE-Juel1)IMD-4-20141217