001     840045
005     20240712113052.0
024 7 _ |a 10.1016/j.jpowsour.2016.08.023
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000384852800005
|2 WOS
037 _ _ |a FZJ-2017-07611
082 _ _ |a 620
100 1 _ |a Qian, Yunxian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode
260 _ _ |a New York, NY [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511245656_6938
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Traditional solid electrolyte interphase (SEI) forming additives of vinylene carbonate (VC), fluoroethylene carbonate (FEC) and ethylene sulfite (ES) are studied with respect to their impact on the formation and growth of the cathode electrolyte interphase (CEI) layer. T-half cells are assembled and undergo three different electrochemical investigation plans: after formation (0.1C, 5 cycles) and long term cycling (0.1C, 5 constant current cycles + 1C, 100/150 constant current/voltage cycles), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and gas chromatography-mass spectrometry (GC-MS) are combined to investigate morphology, CEI composition, CEI thickness and aging products for cells with different electrolyte systems. The obtained results reveal a significant influence of these additives on the CEI composition and CEI growth. With the help of SEM, it is found that large areas of electrolyte decomposition products are formed at the aged electrode surfaces (=after cycling), with the exception when 2 vol% of FEC is added into the reference electrolyte. From XPS measurements, CEI thicknesses are calculated. The reference electrolyte with 2 vol% of FEC shows the thinnest layer after long time aging (0.8 ± 0.2 nm). For the addition of 2 vol% of VC, an incremental growth of the CEI thickness occurs from the 100th to 150th cycle (from 1.0 ± 0.1 nm to 2.9 ± 0.4 nm). By correlating the CEI thickness values with the electrochemical performance, it can be observed that for lithium metal based half cells, the existence of a thinner CEI layer corresponds to a better cycling behavior, with 2 vol% of FEC showing the highest discharge capacity of 114.4 ± 0.2 mAh/g after 150 cycles at 1C. GC-MS shows that both VC and FEC help to prevent fast electrolyte aging.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Niehoff, Philip
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Börner, Markus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Grützke, Martin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mönnighoff, Xaver
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Behrends, Pascal
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 7
|u fzj
700 1 _ |a Schappacher, Falko M.
|0 0000-0002-3743-8837
|b 8
|e Corresponding author
773 _ _ |a 10.1016/j.jpowsour.2016.08.023
|g Vol. 329, p. 31 - 40
|0 PERI:(DE-600)1491915-1
|p 31 - 40
|t Journal of power sources
|v 329
|y 2016
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/840045/files/1-s2.0-S0378775316310229-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840045/files/1-s2.0-S0378775316310229-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840045/files/1-s2.0-S0378775316310229-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840045/files/1-s2.0-S0378775316310229-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840045/files/1-s2.0-S0378775316310229-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840045/files/1-s2.0-S0378775316310229-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840045
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21