000840055 001__ 840055 000840055 005__ 20240709082047.0 000840055 0247_ $$2doi$$a10.1002/ente.201500247 000840055 0247_ $$2ISSN$$a2194-4288 000840055 0247_ $$2ISSN$$a2194-4296 000840055 0247_ $$2WOS$$aWOS:000370257300010 000840055 0247_ $$2altmetric$$aaltmetric:4713784 000840055 037__ $$aFZJ-2017-07619 000840055 082__ $$a620 000840055 1001_ $$0P:(DE-HGF)0$$aGrande, Lorenzo$$b0 000840055 245__ $$aLi/air Flow Battery Employing Ionic Liquid Electrolytes 000840055 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2016 000840055 3367_ $$2DRIVER$$aarticle 000840055 3367_ $$2DataCite$$aOutput Types/Journal article 000840055 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511257470_16399 000840055 3367_ $$2BibTeX$$aARTICLE 000840055 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000840055 3367_ $$00$$2EndNote$$aJournal Article 000840055 520__ $$aDespite the considerable initial optimism behind its development and prospective commercialization, the Li/air battery chemistry has now reached a mature stage of development, which has served to highlight the main underlying technological limitations, as well as what can realistically be expected from it. One of the main challenges is the control of the discharge product morphology, that is, Li2O2, onto the positive electrode. In this article, we show how the three-phase configuration required to ensure cell operation can be induced in a two-phase system made of mesoporous carbon and an ionic liquid electrolyte [N-butyl-N-methylpyrrolidinium bis(trifluoromethane sulfonyl)imide, Pyr14TFSI] by means of an oxygen-bubbling device (OBD) and a peristaltic pump. The use of a non-flammable, non-volatile electrolyte ensures long-term, extensive discharging (up to 4.78 mAh cm−2), as well as operation at temperatures higher than room temperature. 000840055 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000840055 588__ $$aDataset connected to CrossRef 000840055 7001_ $$0P:(DE-HGF)0$$aOchel, Anders$$b1 000840055 7001_ $$0P:(DE-HGF)0$$aMonaco, Simone$$b2 000840055 7001_ $$0P:(DE-HGF)0$$aMastragostino, Marina$$b3 000840055 7001_ $$0P:(DE-HGF)0$$aTonti, Dino$$b4 000840055 7001_ $$0P:(DE-HGF)0$$aPalomino, Pablo$$b5 000840055 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie-Elisée$$b6$$ufzj 000840055 7001_ $$0P:(DE-HGF)0$$aPasserini, Stefano$$b7$$eCorresponding author 000840055 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.201500247$$gVol. 4, no. 1, p. 85 - 89$$n1$$p85 - 89$$tEnergy technology$$v4$$x2194-4288$$y2016 000840055 909CO $$ooai:juser.fz-juelich.de:840055$$pVDB 000840055 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166311$$aForschungszentrum Jülich$$b6$$kFZJ 000840055 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000840055 9141_ $$y2017 000840055 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000840055 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2015 000840055 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000840055 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000840055 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000840055 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000840055 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000840055 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000840055 980__ $$ajournal 000840055 980__ $$aVDB 000840055 980__ $$aI:(DE-Juel1)IEK-12-20141217 000840055 980__ $$aUNRESTRICTED 000840055 981__ $$aI:(DE-Juel1)IMD-4-20141217