001     840055
005     20240709082047.0
024 7 _ |a 10.1002/ente.201500247
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a WOS:000370257300010
|2 WOS
024 7 _ |a altmetric:4713784
|2 altmetric
037 _ _ |a FZJ-2017-07619
082 _ _ |a 620
100 1 _ |a Grande, Lorenzo
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Li/air Flow Battery Employing Ionic Liquid Electrolytes
260 _ _ |a Weinheim [u.a.]
|c 2016
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511257470_16399
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Despite the considerable initial optimism behind its development and prospective commercialization, the Li/air battery chemistry has now reached a mature stage of development, which has served to highlight the main underlying technological limitations, as well as what can realistically be expected from it. One of the main challenges is the control of the discharge product morphology, that is, Li2O2, onto the positive electrode. In this article, we show how the three-phase configuration required to ensure cell operation can be induced in a two-phase system made of mesoporous carbon and an ionic liquid electrolyte [N-butyl-N-methylpyrrolidinium bis(trifluoromethane sulfonyl)imide, Pyr14TFSI] by means of an oxygen-bubbling device (OBD) and a peristaltic pump. The use of a non-flammable, non-volatile electrolyte ensures long-term, extensive discharging (up to 4.78 mAh cm−2), as well as operation at temperatures higher than room temperature.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ochel, Anders
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Monaco, Simone
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mastragostino, Marina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tonti, Dino
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Palomino, Pablo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Paillard, Elie-Elisée
|0 P:(DE-Juel1)166311
|b 6
|u fzj
700 1 _ |a Passerini, Stefano
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1002/ente.201500247
|g Vol. 4, no. 1, p. 85 - 89
|0 PERI:(DE-600)2700412-0
|n 1
|p 85 - 89
|t Energy technology
|v 4
|y 2016
|x 2194-4288
909 C O |o oai:juser.fz-juelich.de:840055
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166311
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21