001     840068
005     20210131030725.0
024 7 _ |a 10.1002/2017GB005657
|2 doi
024 7 _ |a 0886-6236
|2 ISSN
024 7 _ |a 1944-9224
|2 ISSN
024 7 _ |a 2128/16109
|2 Handle
024 7 _ |a WOS:000416625200010
|2 WOS
024 7 _ |a altmetric:28580846
|2 altmetric
037 _ _ |a FZJ-2017-07632
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Gottselig, N.
|0 P:(DE-Juel1)156558
|b 0
245 _ _ |a Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers
260 _ _ |a Hoboken, NJ
|c 2017
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512389368_12601
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Biogeochemical cycling of elements largely occurs in dissolved state, but many elements may also be bound to natural nanoparticles (NNP, 1–100 nm) and fine colloids (100–450 nm). We examined the hypothesis that the size and composition of stream water NNP and colloids vary systematically across Europe. To test this hypothesis, 96 stream water samples were simultaneously collected in 26 forested headwater catchments along two transects across Europe. Three size fractions (~1–20 nm, >20–60 nm, and >60 nm) of NNP and fine colloids were identified with Field Flow Fractionation coupled to inductively coupled plasma mass spectrometry and an organic carbon detector. The results showed that NNP and fine colloids constituted between 2 ± 5% (Si) and 53 ± 21% (Fe; mean ± SD) of total element concentrations, indicating a substantial contribution of particles to element transport in these European streams, especially for P and Fe. The particulate contents of Fe, Al, and organic C were correlated to their total element concentrations, but those of particulate Si, Mn, P, and Ca were not. The fine colloidal fractions >60 nm were dominated by clay minerals across all sites. The resulting element patterns of NNP <60 nm changed from North to South Europe from Fe- to Ca-dominated particles, along with associated changes in acidity, forest type, and dominant lithology.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 1
700 1 _ |a Kirchner, J. W.
|0 0000-0001-6577-3619
|b 2
700 1 _ |a Bol, R.
|0 P:(DE-Juel1)145865
|b 3
700 1 _ |a Eugster, W.
|0 0000-0001-6067-0741
|b 4
700 1 _ |a Granger, S. J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hernández-Crespo, C.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Herrmann, F.
|0 P:(DE-Juel1)141774
|b 7
700 1 _ |a Keizer, J. J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Korkiakoski, M.
|0 0000-0001-6875-9978
|b 9
700 1 _ |a Laudon, H.
|0 0000-0001-6058-1466
|b 10
700 1 _ |a Lehner, I.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Löfgren, S.
|0 0000-0001-7892-2708
|b 12
700 1 _ |a Lohila, A.
|0 0000-0003-3541-672X
|b 13
700 1 _ |a Macleod, C. J. A.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Mölder, M.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Müller, C.
|0 0000-0002-2906-5954
|b 16
700 1 _ |a Nasta, P.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Nischwitz, V.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Paul-Limoges, E.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Pierret, M. C.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Pilegaard, K.
|0 0000-0002-5169-5717
|b 21
700 1 _ |a Romano, N.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Sebastià, M. T.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Stähli, M.
|0 0000-0003-0855-5994
|b 24
700 1 _ |a Voltz, M.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 26
700 1 _ |a Siemens, J.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Klumpp, E.
|0 P:(DE-Juel1)129484
|b 28
|e Corresponding author
773 _ _ |a 10.1002/2017GB005657
|g Vol. 31, no. 10, p. 1592 - 1607
|0 PERI:(DE-600)2021601-4
|n 10
|p 1592 - 1607
|t Global biogeochemical cycles
|v 31
|y 2017
|x 0886-6236
856 4 _ |y Published on 2017-10-26. Available in OpenAccess from 2018-04-26.
|u https://juser.fz-juelich.de/record/840068/files/Gottselig_et_al-2017-Global_Biogeochemical_Cycles.pdf
856 4 _ |y Published on 2017-10-26. Available in OpenAccess from 2018-04-26.
|x icon
|u https://juser.fz-juelich.de/record/840068/files/Gottselig_et_al-2017-Global_Biogeochemical_Cycles.gif?subformat=icon
856 4 _ |y Published on 2017-10-26. Available in OpenAccess from 2018-04-26.
|x icon-1440
|u https://juser.fz-juelich.de/record/840068/files/Gottselig_et_al-2017-Global_Biogeochemical_Cycles.jpg?subformat=icon-1440
856 4 _ |y Published on 2017-10-26. Available in OpenAccess from 2018-04-26.
|x icon-180
|u https://juser.fz-juelich.de/record/840068/files/Gottselig_et_al-2017-Global_Biogeochemical_Cycles.jpg?subformat=icon-180
856 4 _ |y Published on 2017-10-26. Available in OpenAccess from 2018-04-26.
|x icon-640
|u https://juser.fz-juelich.de/record/840068/files/Gottselig_et_al-2017-Global_Biogeochemical_Cycles.jpg?subformat=icon-640
856 4 _ |y Published on 2017-10-26. Available in OpenAccess from 2018-04-26.
|x pdfa
|u https://juser.fz-juelich.de/record/840068/files/Gottselig_et_al-2017-Global_Biogeochemical_Cycles.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:840068
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156558
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)141774
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 28
|6 P:(DE-Juel1)129484
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GLOBAL BIOGEOCHEM CY : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21