000840071 001__ 840071
000840071 005__ 20240712084501.0
000840071 0247_ $$2Handle$$a2128/15923
000840071 0247_ $$2ISSN$$a1866-1793
000840071 020__ $$a978-3-95806-267-2
000840071 037__ $$aFZJ-2017-07635
000840071 041__ $$aEnglish
000840071 1001_ $$0P:(DE-Juel1)162141$$aPomaska, Manuel$$b0$$eCorresponding author$$gmale$$ufzj
000840071 245__ $$aMicrocrystalline Silicon Carbide for Silicon Heterojunction Solar Cells$$f- 2017-09-29
000840071 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2017
000840071 300__ $$a150 S.
000840071 3367_ $$2DataCite$$aOutput Types/Dissertation
000840071 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000840071 3367_ $$2ORCID$$aDISSERTATION
000840071 3367_ $$2BibTeX$$aPHDTHESIS
000840071 3367_ $$02$$2EndNote$$aThesis
000840071 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1511331795_14129
000840071 3367_ $$2DRIVER$$adoctoralThesis
000840071 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v392
000840071 502__ $$aRWTH Aachen, Diss., 2017$$bDissertation$$cRWTH Aachen$$d2017
000840071 520__ $$aN-type microcrystalline silicon carbide ($\mu$c-SiC:H(n)) is a promising material for the doped layer on the illuminated side of silicon heterojunction (SHJ) solar cells, because it offers a combination of large bandgap for high optical transparency and suitable refractive index for low reflection. Moreover, both optical properties can be provided at sufficiently high electrical conductivity in order to minimize electrical resistance losses. However, two issues needed to be overcome for a successful implementation of $\mu$c-SiC:H(n) in SHJ solar cells. First, the opto-electrical properties of the $\mu$c-SiC:H(n) films were suffering from reproducibility problems in the past. A deeper understanding of the relation between microstructure, electrical conductivity and optical transparency was necessary. Second, it was still unclear, if the required growth conditions for the high quality $\mu$c-SiC:H(n) are compatible with maintaining high passivation quality of the silicon wafer surfaces. A high hydrogen dilution during the film growth is necessary to provide the promising opto-electrical properties, but the common passivation layers of intrinsic amorphous silicon suffer from severe deterioration due to hydrogen etching. A systematic adaptation of the $\mu$c-SiC:H(n) growth conditions and the development of a suitable passivation layer were missing so far. The material properties and process parameters of $\mu$c-SiC:H(n) films were studied in detail in this thesis. The $\mu$c-SiC:H(n) films were grown by hot wire chemical vapor deposition (HWCVD) as well as by plasma enhanced chemical vapor deposition (PECVD). The relations of crystalline grain size in $\mu$c-SiC:H(n) with deposition rate, electrical conductivity, hydrogen content, carbon fraction, and optical absorption coefficient were investigated. The impact of oxygen and nitrogen doping on optical and electrical properties were investigated separately. In particular, their influence on [...]
000840071 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000840071 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000840071 8564_ $$uhttps://juser.fz-juelich.de/record/840071/files/Energie_Umwelt_392.pdf$$yOpenAccess
000840071 8564_ $$uhttps://juser.fz-juelich.de/record/840071/files/Energie_Umwelt_392.gif?subformat=icon$$xicon$$yOpenAccess
000840071 8564_ $$uhttps://juser.fz-juelich.de/record/840071/files/Energie_Umwelt_392.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840071 8564_ $$uhttps://juser.fz-juelich.de/record/840071/files/Energie_Umwelt_392.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840071 8564_ $$uhttps://juser.fz-juelich.de/record/840071/files/Energie_Umwelt_392.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840071 8564_ $$uhttps://juser.fz-juelich.de/record/840071/files/Energie_Umwelt_392.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840071 909CO $$ooai:juser.fz-juelich.de:840071$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000840071 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840071 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000840071 9141_ $$y2017
000840071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162141$$aForschungszentrum Jülich$$b0$$kFZJ
000840071 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000840071 920__ $$lyes
000840071 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000840071 9801_ $$aFullTexts
000840071 980__ $$aphd
000840071 980__ $$aVDB
000840071 980__ $$aUNRESTRICTED
000840071 980__ $$abook
000840071 980__ $$aI:(DE-Juel1)IEK-5-20101013
000840071 981__ $$aI:(DE-Juel1)IMD-3-20101013