
The DEEP/-ER architecture:  

a modular approach to  

extreme-scale computing 

Estela Suarez  

Jülich Supercomputing Centre (JSC) 

Germany 

 

06.07.2017 

The research leading to these results has received funding from the European Community  

(FP7/2007-2013 and H2020) under Grant Agreements #287530, #610476, and  #754304 



Both combine: 

-Hardware 

-Software 

-Applications 

in a strong co-design 

 

 

The DEEP projects 
DEEP, DEEP-ER and DEEP-EST 

2 www.deep-projects.eu 
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Homogeneous cluster 

• Cluster Nodes: general purpose (multi-core) processor technology 

– Same processor characteristics in all nodes 

• Single high-speed network connecting them all 

• Good concept but limited efficiency for selected HPC applications 
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“Standard” heterogeneity 
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Flat topology 

Simple management of 

resources 

Static assignment of 

accelerators to CPUs 

Accelerators cannot act 

autonomously 
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Cluster-Booster architecture 
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Booster 

Flexible assignment of resources (CPUs, accelerators) 

Direct communication between accelerators 

“Offload” of large and complex parts of applications 



DEEP Architecture 
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DEEP Prototype 

• Installed at JSC 

• 1,5 racks 

• 500 TFlop/s 

peak perf. 

• 3.5 GFlop/s/W 

• Water cooled 
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Cluster  
(128 Xeon) 

Booster 
(384 Xeon Phi 

KNC) 



Xeon Phi 

(KNL) 

DEEP-ER Architecture 
Innovation 
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On-Node NVM 

Self-Booting Nodes 

Network attached 
memory 

Simplified Interconnect Extoll 



DEEP-ER prototype 

Cluster 
 16 dual-socket Intel Xeon 

E5-2680v3 (Haswell) 

 128 GB DRAM 

 400 GB NVMe 

 EXTOLL Tourmalet 

Booster 
 8 Intel Xeon Phi (KNL) 

7210X nodes (16+96GB) 

 400 GB NVMe 

 EXTOLL Tourmalet (ASIC) 

100 Gb/s per link 

 2x NAM devices 

Intel Xeon Phi (KNL) 

NAM 

EXTOLL Tourmalet 

NVMe 
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DEEP vs. DEEP-ER  
Application performance comparison 
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Setup: 

• 20 iterations of the time-loop / 

No checkpointing 

• 1853832 cells 

• 1 node with best process-

threads combination 



SOFTWARE 

ENVIRONMENT 
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Software environment 

• Scheduler: Torque/Maui  future moving to SLURM 

• Filesystem: BeeGFS 

• Compilers: Intel, gcc, PGI 

• Debuggers: Intel Inspector (threading, memory), 

 TotalView (source code, memory debugger) 

• Programming: ParaStation MPI (mpivich),   

 OpenMP, OmpSs 

• Performance analysis tools: Extrae/Paraver, 

 Scalasca, Intel Advisor, Intel, VTune… 

• Libraries: SIONlib, SCR, E10, HDF5,  

 netcdf, PETSc … 
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Programming environment 

Cluster Booster 

Booster 
Interface 
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Cluster Booster 
Protocol 

MPI_Comm_spawn 

ParaStation MPI 

OmpSs on top of MPI provides pragmas to ease the offload process 



Application running on DEEP 
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Source code 

Compiler 

Application 

binaries 

DEEP 

Runtime 

#pragma omp task in(…) out (…) onto (com, size*rank+1) 
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DEEP-ER I/O and resiliency 

• I/O Software architecture 

 

 

 

 

 

 

– BeeGFS (parallel FS) 

– SIONlib (I/O concentrator) 

– Exascale10 (collective I/O) 

• Resiliency SW architecture 

 

 

 

 

 

 

– SCR (checkpointing handling) 

– ParaStation MPI (process CP) 

– OmpSs (task checkpointing) 

Combination of SW packages provides new functionality and exploits HW 



APPLICATIONS 
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Application-driven approach 

DEEP projects applications (15): 

• Brain simulation (EPFL + NMBU) 

• Space weather simulation (KULeuven) 

• Climate simulation (Cyprus Institute) 

• Computational fluid engineering (CERFACS) 

• High temperature superconductivity (CINECA) 

• Seismic imaging (CGG + BSC) 

• Human exposure to electromagnetic fields (INRIA) 

• Geoscience (LRZ) 

• Radio astronomy (Astron)  

• Lattice QCD (University of Regensburg) 

• Molecular dynamics (NCSA) 

• Data analytics in Earth Science (UoI) 

• High Energy Physics (CERN) 
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Architecture advantages 

• Full user flexibility – many different use modes 

– Dynamic ratio of processors/coprocessors 

– Use Booster as pool of accelerators (globally shared) 

– Discrete use of the Booster 

– Discrete use + I/O offload 

– Specialized symmetric mode 

• More efficient use of system resources 

– Only resources really needed are blocked by applications 

– Dynamic allocation further increases system utilization 

• Better I/O performance and resiliency 

18 



MODULAR SUPERCOMPUTING 

ARCHITECTURE 

DEEP-EST and JURECA 
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… 

Modular Supercomputing 

Module 1: 

Storage 

Module 3:  

Many core Booster 

Module 2: 

Cluster 
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Module 4:  

Memory 

Booster 

NAM 

NAM 

NAM 

NIC MEM 

NIC MEM 

… 

Module 5:  

Data 

Analytics 

DN DN 

Generalization of the Cluster-Booster concept 
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Module 6:  

Graphics 

Booster 

GN GN 

GN 

NIC 



Modular Supercomputing 
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Modular Supercomputing 
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Workload 1 

Workload 2 

Workload 3 



DEEP-EST prototype 
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Going production 
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Summary 

The DEEP projects bring a new view to heterogeneity 

 Modular Supercomputing architecture 

 Software environment fully supporting system design 

 Programming environment based on standards 

 Hardware, software and applications jointly developed 

 Strongly co-design driven 

 Cluster + Booster going in production: JURECA system 

Next step: DEEP-EST 

 Three modules 

 Address HPDA + HPC 
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Want to try out?    

www.deep-projects.eu 

@DEEPprojects 

pmt@deep-projects.eu 


