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Introduction

Understanding how information is processed by networks of neurons in the brain is a
major goal in neuroscience. There has been a long-standing debate in the community
on the contribution of the firing activity of individual neurons or populations of neu-
rons to information processing: one perspective is that the firing rate of the neurons,
i.e. the number of spikes per time unit, represents information or is relevant for the
processing. Another perspective is that neurons communicate through precisely timed
coordination of spiking, a view that results from the insight that a neuron fires most
efficiently if it receives synchronous spike input, i.e., in the range of a few milliseconds
[1].

To test whether temporal coordination of spiking activity is indeed relevant for
neuronal information processing, advanced data analysis methods are required that
perform correlation analysis between simultaneously recorded single unit spike trains.
The Unitary Events (UE) analysis method [12, 18, 13, 14] is able to extract significant
spike synchrony between neuronal activities that is beyond what is expected by chance
(given the rates) and to follow the dynamics of this coordination. The tricky issue with
such analyses is that one has to take into account that experimental spike data are
typically non-stationary in the sense that the firing rates are not stationary in time
and not homogeneous across trials, and that the statistics of the individual spike trains
deviate from those of a Poisson process [16, 17]. If such features are ignored there is a
considerable danger of occurrence of false positives and thus wrong interpretation of
the data. In particular, changes in the firing rates are the most prominent generators of
false positives if ignored. The original UE method considers this aspect by performing
the analysis in a sliding time window fashion. In later versions of the analysis method
other features were corrected for by considering the respective features in the null-
hypothesis of the tests [15, 22, 21, 24], either by using extended analytical descriptions
of the null-hypotheses or by use of surrogate methods [16, 17, 21].

The UE method had been applied to experimental parallel spike data from, e.g.,
the motor cortex of awake behaving non-human primates [26, 18, 10, 25, 15, 20, 6,
7] and to data from visual cortices [22, 19]. Generally it was found that UEs, i.e.,
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synchronous spike events across neurons that are in excess of the expectation, occur
in relation to behavior, e.g., when the animal expects a signal to occur, however the
signal does not occur [26]. This finding, in particular, demonstrates the core feature of
the method: by performing a time resolved analysis, the method accounts for changes
in the firing rates and captures modulations of significant spike synchrony in time. It
was also shown that the time of occurrence of UEs may change to a new requested
timing in the behavior during a learning process [20].

Several of these studies based on the UE method, in particular [26], have been
widely cited and the method has been recognized as one of the standard tools to
analyze temporal coordination of neuronal spiking activities [4, 23]. The analysis
method has been and is taught in international data analysis courses. However, a
publicly available and open source implementation of the UE method had not been
available. Only very recently, one of the authors of this study (VR) reimplemented
the UE analysis as part of the Electrophysiology Analysis Toolbox! (Elephant), a
Python library that provides implementations for the analysis of electrophysiological
data. This reimplementation of the method was particularly required for, in addition
to the general motivation for a reimplementation to confirm the results not depending
on small implementation details or mistakes, the following two specific reasons.

First, the custom data object model used to represent the primary data and meta-
data in the original analysis code was not documented. Therefore, any data represented
in a specific file format had to be converted by implementing a custom data loading
routine for this data model. Our new implementation of the UE method is part of the
Elephant and Neo? libraries and is based on the internal data object model provided by
the Neo library [9], a package for representing electrophysiology data in Python. Neo
provides support for reading a wide range of neurophysiology proprietary file formats,
and supports writing to a subset of these formats, including non-proprietary formats
such as HDF5.

Second, the implementation of the UE method in the original publication has
experienced several updates after its publication in order to include improvements and
extensions of the method to accommodate more features of experimental data. Since
no version control was employed in this development process, the original code used in
Riehle et al. [26] was lost at some point. Considering that no systematic testing was
performed each time the code base of the Unitary Event analysis was updated after
the original publication to check whether the code gives the same results as before, it
was not clear whether the latest version could exactly reproduce the results of [26].

In this paper we illustrate the successful reproduction of the results shown in [26]
using our new Python implementation of the UE method. In particular, we reproduce
Figure 2 and Figure 4A of the original paper, which represent the central results of
the original study. The remainder of the original paper consisted of more example
analyses of individual data sets and a meta statistics across many data sets, all of
which were based on the same analysis method and thus do not provide additional
insight when reproduced. In the original publication the authors used two different UE
implementations: one implemented by one of the coauthors of the present study (SG)
in IDL3, and the other in Matlab (Mathworks, Nattick, MA) implemented later by
Markus Diesmann (MD) and SG. The IDL implementation is not available anymore.
At a later point we were provided with a Matlab implementation of the extended UE
method, however it does not preserve the original implementation used in [26] and was
not considered in this study.

For the reproduction of the original results we contacted and communicated with
Alexa Riehle (AR), CNRS-AMU, Marseille, and MD, Research Centre Jiilich. AR is
the first author of the original publication and performed the experiments and data
analysis. MD is the third author of the original publication and contributed with

Thttp://neuralensemble.org/elephant/
2http://neuralensemble.org/neo/
3http://www.harrisgeospatial.com /ProductsandSolutions/GeospatialProducts/IDL.aspx
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the Matlab implementation and quality checks of the software implementations. The
reproduction of the results of [26] would not have been possible without contacting
these authors, since the information in the original publication is not sufficient for
reproducing the results. AR provided us with the original data and information,
including an old written report by MD, which was crucial to reproduce Figure 4A.

Methods

For reproducing the results of [26] we use our reimplementation of the UE analysis
method in Python which is made available in the unitary_event_analysis module
of the Elephant library (accepted pull-request: [27]). The method is accompanied by
unit tests for individual functions (test coverage: 88.54%) and documented as part of
the library documentation. The structure and algorithm of our UE implementation is
explained in the pseudo-code shown below.

In the following, we will explain the algorithm in detail. The primary data entering
the UE method is a set of parallel, i.e., simultaneously recorded, spike trains, recorded
in one or multiple trials. In Elephant, an individual spike train of a particular neuron
in a particular trial data is represented as a Spiketrain object in the data object
model provided by the Neo library, which stores the time points of spike occurrences
along with additional information describing the spike train, such as the start and
end times. The UE method consumes a nested list of Spiketrain objects relating to
the spike trains of individual neurons in the individual trials. In order to perform the
necessary calculations, the spike data must be converted to an alternative time-binned
representation (line 1 in the pseudo code) where the parallel spike trains are stored as
binary sequences of ones (marking time bins containing at least 1 spike) and zeros (bins
with no spike). The bin size is a parameter provided as input (parameter bin_size
in the pseudo code) to the analysis, and defines the temporal precision in detecting
spike synchrony. A spike pattern, which is a representation of spike synchrony in the
analysis, is defined as a specific vector of zeros and ones in one time bin of a given
trial across all neurons. Since the aim of the UE method is to detect significant spike
synchrony, the total number of spike patterns of concern is given by 2V — N — 1, where
N is the number of neurons, the first term is the number of all possible spike patterns,
the second term is the number of spike patterns composed of only one spike, and the
third term is the number of the pattern without a spike. In order to limit the analysis
to a set of patterns of interest, the input parameter pattern_hash_values specifies
the patterns to consider in the analysis in the form of a hash value which uniquely
represents each spike pattern (line 2 in the pseudo code). The hash value is obtained
by interpreting the binary spike pattern as a binary number, where the n-th neuron is
represented by bit n — 1.

The UE analysis is performed in a sliding time window fashion, i.e. the data in
each window are analyzed separately. This approach is chosen to account for potential
changes of the firing rates in time and to follow the dynamics of the correlation. Here,
a sliding time window is defined based on trial time, meaning that a certain window
position includes the activity of all neurons in all trials in a certain time interval of
the trial. In the algorithm, at each position of the window, the data contained in the
window are extracted in order to compute the significance of the specified patterns (line
3 in the pseudo code). For doing that the UE analysis requires the empirical number
of occurrences of each pattern as well as its expected number given the firing rates.
While the empirical number is directly extracted from the data (line 5 in the pseudo
code), the method to compute the expected number can be chosen using the input
parameter method depending on the assumptions regarding the data (line 6-19 in the
pseudo code). For cross-trial homogeneous data, selecting “analytic_ TrialAverage” as
method (line 7 in the pseudo code) computes the expected number by estimating the
rate of each neuron from the average spike count across trials [13, 14]. For data with
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Algorithm of the Unitary Events method: Black color shows the
part of the code used for reproduction of the results of Riehle et al
(1997) and the gray color indicates the additional features which are

now available in our reimplementation but not used specifically here.

input : spike_trains, bin_size, window_size, window_step,
pattern_hash_values, method

output: time series of: suprise S, number of empirical coincidences
n_emp, number of expected coincidences n_exp, firing rate of

each neuron rate

1 Discretize the input spike train data (spike_trains) and represent
them as binary sequences (‘BinnedSpikeTrain()' from conversion
module in Elephant)

2 for each hash value from pattern_hash values do

3 Define the sliding window positions over the whole length of the

data given window_size and window_step (‘_winpos()' and

‘ bintime() )

4 for each window position do
5 Calculate n_emp (‘n_emp_mat()‘ and ‘n_emp_mat_sum_trial()")
6 if method is “analytic_TrialAverage” or

“analytic_Trial By Trial” then

7 if method is “analytic_TrialAverage” then

8 calculate n_exp based on “analytic_TrialAverage”
(‘_n_exp_mat_analytic()' and ‘n_exp_mat_sum_trial()")

9 end

10 else if method is “analytic_TrialByTrial” then

11 Calculate n_exp based on “analytic_TrialByTrial”
(‘_n_exp_mat_analytic()" and ‘n_exp_mat_sum_trial()")

12 end

13 Generate Poisson distribution with the mean n_exp

14 end

15 else if method is “surrogate_TrialByTrial” then

16 Generate n_exp distribution based on surrogates

(‘-n_exp-mat_surrogate()' and ‘n_exp_mat_sum_trial()")

17 end

18 Calculate p-value of n_emp given the distribution of n_exp

19 end

20 Calculate the surprise as a function of time from the p-values at

each window position (‘jointJ()")
21 end

cross-trial variability, the “analytic _TrialByTrial” method (line 10 in the pseudo code)
should be used, which accounts for cross-trial changes in the firing rates by computing
the expected number of occurrences of the spike pattern based on the product of single-
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trial estimates of firing rates [15]. Both methods perform a parametric test, where the
number of occurrences of the spike pattern is assumed to be a Poisson-distributed. As
an alternative non-parametric option, selecting “surrogate TrialByTrial” as method
(line 15 in the pseudo code) will numerically compute the distribution of the expected
number by implementing the null-hypothesis based on surrogate spike trains [16]. In
the following, we will explain these methods in greater detail.

In case of selecting “analytic_TrialAverage” - as used in the remainder of this
study for the reproduction of [26] - the number of spikes per neuron within the sliding
window is summed across trials and divided by the number of trials and bins contained,
thus yielding the average probability p; to have a spike of neuron 7 in a bin of the time
window. The probability to find a particular pattern by chance in a bin is then
computed by multiplication of the relevant probabilities, e.g. for a pattern [1,0,1] the
probability p of occurrence is given by pj1 9,1] = p1 * (1 — p2) * p3. Note that (1 — p3)
is the probability for neuron 2 to contribute no spike to the pattern. The expected
number of pattern occurrences, computed as the product of the occurrence probability
p of the pattern, e.g. pp1 0,17, and the number of bins (across all trials) covered by the
sliding window. The distribution of pattern occurrence numbers is given by a Poisson
distribution with the mean equal to the expected number.

Alternatively, for the “analytic_TrialByTrial” method, the firing probability of
each neuron is calculated in a trial-by-trial manner based on the spike counts per
trial. The probability p of finding the pattern by chance is calculated by summing
the products of the firing probabilities obtained individually from each trial. As for
the trial-averaging method, the expected number of pattern occurrences is given by
multiplication with the number of bins of the trial in the sliding window, used as
the mean of a Poisson distribution to obtain the distribution of expected pattern
occurrence numbers.

As a third alternative, a surrogate method for estimating the expected number can
be selected using “surrogate_ TrialByTrial” for the parameter method. In this Monte-
Carlo approach, a surrogate version of the spike trains is generated repeatedly, and
from each surrogate the number of occurrences of the pattern of interest is counted.
The method by which surrogates are generated from the input spike trains is spike
time randomization of the spikes per trial and per neuron within the sliding window.
The pattern counts obtained from this procedure form a distribution of the expected
number of occurrences of the pattern, thus implementing the null-hypothesis under
the constraints implied by the surrogate method.

The distribution obtained by either of the three methods above is then used for
the significance test of the pattern on the basis of the empirical occurrence count. The
p-value resulting from the test is then transformed by a logarithmic transformation to
the surprise value (line 20 in the pseudo code), which indicates by positive or negative
values more or less occurrences of the pattern than expected by chance, respectively.
If the p-value is below a fixed prescribed level (e.g. below 5%, which corresponds to a
surprise value exceeding 1.27), the occurrences of the spike pattern under investigation
in the sliding window are marked as UEs for that pattern. This procedure is performed
for each pattern of interest, and in each sliding window.

In the present study, in order to reproduce the original results we used the “an-
alytic__TrialAverage” method, which reflects the analysis performed in the original
publication [26]. The “analytic_ TrialByTrial” and “surrogate_ TrialByTrial” meth-
ods are extensions of the original UE method, which were developed after the original
publication and introduced in subsequent works [15, 16].

Our reimplementation of the UE method is based on the data object model provided
by the Neo library, upon which the Elephant library is based. The Neo library provides
loading routines for a variety of data formats, including proprietary and generic data
formats. The data sets available for reproducing Figures 2 and 4A of [26] were tab-
separated ASCII text files containing two columns of integers (informally often referred
to as “GDF-format”): the first column provides event codes (behavioral events or
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neuron IDs), and the second column contains the time of the occurrence of these
events (time stamps). The units of the time stamps are not contained in the data
file. We partly extracted metadata information, in particular the time units and the
meaning of the event codes, from a Matlab routine (provided by AR) operating on the
GDF data file. However, only after further communication with AR we were able to
identify the exact meaning of the content of the data files. Using this information, we
wrote a new loading routine that loads the GDF data as Neo data objects.

Our reimplementation uses the conversion module of Elephant for converting
the spike data (represented as a series of timestamps) into the binary sequence to
guarantee a unique, global binning mechanism for all analysis methods provided in
Elephant. The bin size to be set for the analysis was extracted from the original
publication. However, defining the time point to start the binning of each single trial
data required to know the alignment event in each trial and how much time before
this event (pre-time) is considered. Since this information was not documented in the
original paper, we tried several possibilities until we got an agreement with the original
figures as will be shown in the Results.

To check if our Python implementation produces the same results as the imple-
mentation(s) used in the original publication, we compare each of our figures in detail
with the original figures. For this comparison, as the original results used to generate
these figures are not available to us, we first extract the times of the spikes and unitary
events from the vector graphic image (PDF) in the original paper. Then, we directly
compare these times to the times of spikes and unitary events in our reproduced results
by plotting the former against the latter, as well as examining the distribution of the
differences between them.

Results

For the reproduction of the original results in [26], we have to focus on reproducing
Figure 2A-F and Figure 4A, since for the rest of the figures data were either incom-
plete in respect to metadata (original Figure 3) or not available (original Figure 4B,C).
Figure 2 represents the main result of the study and includes the UE analysis that
underlies the subsequent analyses. Figure 4A is an example of the application of the
UE method to data with more than 2 neurons. In terms of complexity of the code
the implementation of the UE analysis for three or more neurons is considerably more
demanding than for only two neurons. With this example we show that our imple-
mentation is capable of performing the UE analysis for the generic case of arbitrary
number of neurons.

We apply our reimplementation of the UE method to preprocessed versions of the
spike train data available to us after communication with AR, which in part were
identical to those used in the original analysis. Also, we learned from AR that Figure
2 was generated by the Matlab implementation of the UE method while all remaining
figures of the original publication, including Figure 4A, were generated by the older
implementation in IDL (see Methods regarding versions of the original code).

Let us start with the reproduction of Figure 2 of the original publication. We first
give a brief description of the experiment (see the original publication for details).
After the monkey was presented with the preparatory signal (PS) he had to sit still
and wait for a response signal (RS) to start his arm movement (i.e. equivalent to a GO
signal). The duration of the waiting period was randomly selected on a trial-by-trial
basis to be either 600, 900, 1200 or 1500 ms. In Figure 2 of [26] only trials of the
longest waiting period (1500 ms) were used for the analysis. In these trials, times
marked as expected signals ES1, ES2, and ES3 corresponded to the ends of the three
shorter waiting periods, at which the monkey could have gotten the RS signal but did
not. As the monkey was trained to recognize and distinguish the four waiting periods,
but was not informed of the randomly selected period for a given trial, ES1-ES3 were
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Figure 1: Initial attempt to reproduce Figure 2 of the original publication with trial alignment to
PS. A) Raster plot of two neurons (neuron 2: top of panel; neuron 3: bottom of panel) in 32 trials
(sorted identically for both neurons). B) Average firing rate of each neuron calculated across trials
in a sliding window of length 100 ms in steps of 5 ms. C) Same raster plot as in panel A with spike
coincidences (i.e., pattern [1,1]) between the two neurons marked by cyan squares. D) Empirical
(cyan) and expected (magenta) number of coincidences calculated in a time-resolved manner
(parameters of sliding window identical to panel B). E) Time course of the surprise measure,
calculated in same sliding windows as in panel B. Surprise values that correspond to positive and
negative significance levels a+ = 0.05 and a— = 0.95 are shown with by horizontal red and
green lines, respectively. F) Same raster plot as in panel A with significant coincidences, i.e. UEs,
marked by red squares.
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Figure 2: Reproduction of Figure 2 of the original publication with trial alignment to RS. The
same conventions as in Figure 1 apply to the respective panels.
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time points at which the monkey expected that a signal could occur.

Since the data file for Figure 2 contained the data as a continuous recording of one
recording session (“winny131.gdf”; 2 neurons, and behavioral events), we extract the
trials by cutting the data in a time window around specific trigger events that belong
to trials of the longest waiting period, such that the complete trial is contained in the
cut-out. In a subsequent step, the spike times in the individual trials are aligned to
the trigger event, such that spike times in each trial are given as relative to the trigger.

The original publication does not provide information which event was used as the
trigger. In this experiment, 2 events that occur in every trial could serve as trigger
events, the preparatory signal PS (event code 114) and the response signal RS (event
code 124). We noticed that the time interval between PS and RS for the longest trials
was not identical across the respective trials and varied by + 1 ms. Given the UE
method is applied on a time scale of 5 ms, the analysis results therefore are expected
to depend on whether trials are aligned to PS or RS. Thus, we decide to generate the
results for both alignments.

Figuresl and 2 show the results of performing the UE analysis for PS- and RS-
aligned data, respectively. Here, the analysis parameters are set to the identical values
as reported in the original publication (bin size: 5 ms, analysis time window size: 100
ms, time step of the sliding window: 5 ms, significance level & = 0.05). The comparison
of the two figures to the original figure shows agreement in the raster displays (panel A)
and the time-resolved, trial-averaged firing rate estimates (B). However, although the
graphs of the number of coincidences per sliding window (panel D) and the surprise
measure (panel E) are similar in their overall general behavior, they differ in the
details. Thus, indeed the choice of the alignment influences the analysis result. In
order to test if one of the two alignments is in agreement with the original publication,
we perform a detailed visual comparison of our two figures and the original one on
the basis of the spikes marked as coincident (panels C) and as part of a UE (panel
D). We notice that when aligning to PS (Figurel), the marked spikes do not agree
in all details with the original figure. However, in Figure2, with trials aligned to RS,
we find no disagreements with the original figure. After this visual comparison we
check if our results are exactly identical to the original ones. Therefore, we extract
the positions of the data points representing spikes and UEs in the original figure by
reading the plotting commands in the PDF file of the original paper, and compare
them to our reproduced results. In Figure3 A the reproduced spike times in Figure2
A are plotted against the extracted original spike times. The plotted data points lie
on the diagonal line, indicating that the reproduced spike times correspond to the
original ones. Figure3 B shows the same plot for the UEs, indicating the identity
of the original and reproduced UE timings as well. To further confirm the identity,
we plot the distributions of the differences between the original and the reproduced
timings for the spikes (Figure3 C; black) and the UEs (Figure3 D). The differences are
at most +/- 0.3 ms, which are considerably narrower than the +/- 1 ms differences
caused by the misaligned data shown in Figurel A (see for comparison the gray plot
in Figure3 C, which shows the differences between the original spike times and the
misaligned spike times). The remaining minor differences of the spike and UE times
of the correctly aligned data and the original data are only due to slight errors in the
extraction of the spike times from the original figure, which is inevitable because of
a limited precision of the plotting commands in the PDF file. Thus, we confirm that
spike timings in the correctly aligned data are identical to those in the original data,
and our implementation of the UE analysis applied to these data reproduces exactly
the same results as shown in the original paper.

As a next step we aim at reproducing Figure 4A of [26]. This figure contains the
result of the analysis of three neurons recorded simultaneously, in contrast to Figure
2 where only two neurons are considered. We analyze the original data for this figure
provided by AR with the parameter values given in [26] and compare our result to
the original figure. Figure 4A of the original publication contains the raster displays
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of the data in the top panel, the raster displays with the marked coincident spikes
(blue marks) in the middle panel, and the raster displays with the marked spikes that
are part of a UE (red marks) in the bottom panel. We find that the UE result is
different, as the UEs occur at different times and between different neurons compared
to the original publication. Thus we check whether the spike times of the individual
spikes are identical between the original and our results. Figure4 shows a segment of
the raster plot of the original figure and the corresponding segment of our reproduced
figure. We compare the positions of the single spikes and find that there are small
discrepancies between the two raster plots in some of the spike times. Figure4 shows
examples of clusters of spikes marked in red that should be identical in both raster
plots but contain a few individual spikes that are slightly shifted in our figure compared
to the original figure by a very small amount.

Original Data at hand in 1ms resolution
.. 5 AN A v

[
© 4
>
() L
Z o

@ @ o R

Time Time
Figure 4: Close-ups of the original raster display in Figure 4A of the original publication (left) and
the first data file available at hand for reproduction (right) reveal slight differences in the positions
of some spikes. Data on the right are aligned (similar to the data on the left) to ES1 (event code
15 in the GDF data file). The time before the alignment event is chosen as 700 ms, and a bin
size of 5 ms is used. The red marks indicate spike clusters with identified differences between the

left and the right panel, where at least one spike is shifted in the right panel compared to the left
one.

This leads us to the suspicion that the data are binned in a fashion that is not
consistent with the data shown in the original publication. Personal communication
with AR revealed that while Figure 2 had been generated by the Matlab implemen-
tation of the UE analysis, Figure 4 had been generated by the IDL implementation
(see Introduction). A report by MD written before the time of the original publication
summarized a comparison of the IDL and the Matlab implementations, and concluded
that both were correct implementations of the method, but differed in their results due
to a slightly different implementation of the down-sampling and binning of the raw
data (recorded at 10 kHz). In the workflow for the IDL implementation, as illustrated
in Figure5 (the leftmost branch of the diagram), the raw data were first down-sampled
to a temporal resolution of 0.5 ms (by a program 2gdf) and then further rounded to
1 ms resolution integer values inside the IDL implementation. The data available to
us had a resolution of 1 ms, which must have been a result of another down-sampling
procedure than the one for the IDL implementation. This explains the difference in
the raster displays, and this difference is likely also the cause that we were initially
not able to reproduce the original UE result.

In our reproduction of Figure 2 of the original paper we use preprocessed data avail-
able in 1 ms resolution, that likely experienced the alexa2gdf program for conversion
as shown in Figure5 (the rightmost branch), before data are loaded into our reimple-
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| Alexa Format |
| resolution 0.1ms|

/ \
/ \
/ \
| Alexas 2gdf | | alexa2gdf |
| Program | | resolution 1ms |
| resolution 0.5ms | | |
_____________________ \ e e e e e e e e e e e e e = m
| method: \ method:
| binning? T cutting
| \ (binning)
| \
| IDL UE Software | | MATLAB UE Software |
| resolution 1ms | | |
| | | |
| method: |
| round |
| |
Analysis Results Analysis Results

Figure 5: lllustration of the data preprocessing workflow, translated from the 1997 report of
MD (in German) on the comparison of the first UE implementation in IDL (left branch) and the
second implementation in Matlab [8] (right branch). Data entering both analysis branches have
a resolution of 0.1 ms (top box). In the IDL branch spike times ¢ in the original data are first
transformed to a resolution of h = 0.5 ms (by the 2gdf program, middle left) using the method
of binning [t/h]. Then the data are read into the “IDL UE Software” (lower left box) and therein
converted to h = 1 ms resolution by the method of “round half up” [t/h+1./2] prior to analysis.
Alternatively, one can load the 0.5 ms resolution data into the “MATLAB UE Software” (lower
right box). Here the bin width is a parameter of the analysis and thus data can be converted to a
1 ms resolution but results are different from the IDL branch. Results are only identical if a prior
transformation “T" (diagonal in center) performs a round half up and no further binning is done
in the MATLAB program. At a later point in time the alexa2gdf converter function (written
in MATLAB) became available such that data in the original 0.1 ms resolution could directly be
converted to the 1 ms resolution by binning. The full report (“Report_by_MarkusDiesmann.txt")
is included in the data folder of the repository for this paper.
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mentation of the UE analysis. However, according to the aforementioned report by
MD, we only have a chance to reproduce Figure 4A of [26] if we have the original data
or a version of them with a time resolution lower than 1 ms available. The original
raw data with 0.1 ms resolution are presumably only available on a storage medium
and format that at present we are not able to read and interpret. However, after we
contacted AR she found the data (“jenny201 345 preprocessed.gdf”) of Figure 4A of
[26] with a time resolution of 0.5 ms, which likely experienced the 2gdf program for
conversion (middle left box in Figureb).

We loaded this data at 0.5 ms resolution into Python and converted the data from
the 0.5 ms to the required 1 ms resolution by the mathematical operation Lx + %J ,
called “rounding half up”. In numerical software packages, including IDL, this oper-
ation is typically implemented by a function named round(). However, the round()
implementation of NumPy (version 1.11.0) performs an even rounding, i.e., values ex-
actly halfway between two integers are rounded to the nearest even integer. Indeed,
the latter implementation of rounding did not reproduce the result of the original
publication. Thus, we used the expression floor (x+0.5) to perform rounding as it is
implemented by IDL. The procedure completely reproduces panel A of Figure 4 in the
original publication (see Figure6).

Spike Events
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Figure 6: Reproduction of Figure 4A of the original publication. The left part of the figure shows
the UE analysis result for the data aligned to ES1 (event code 15 in the GDF data file) with a
time before the event (pre-time) set to 699 ms. The right part of the figure shows the analysis of
the same data aligned to RS and with a pre-time of 99 ms. The left and right parts of the figure
show 96 and 128 trials, respectively.
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Conclusion

We are able to reproduce the original results of [26] by applying a new reimplemen-
tation of the Unitary Events analysis method in Python to the original data. The
method involves a number of numerical computations and is very sensitive, as we
show here by the comparison of Figures 1 and 2, which differed in the events that the
trials were aligned to. This difference in the alignment would not affect the results
if the time difference between the two events (PS and RS) were identical across the
trials. But since the latter was not the case due to hardware features of the recording
setup (as we learned from the first author of the original publication), the binning of
the data started at a slightly different time points in different trials. This likely led to
a loss or an addition of a spike in a bin and thus to a small difference of the number
of spike synchrony events (see also the discussion on the issues of exclusive binning
n [18]). In spite of this sensitivity of the method, we succeeded in generating results
that are exactly identical to the original ones, as confirmed by the direct comparison
of the positions of spikes and UEs in the original and the reproduced figures. This is a
strong indication that our new implementation of the analysis faithfully implemented
the UE method.

The event to which the data were aligned and the cut time which then defined
the start of the (exclusive) binning was not documented in the original publication.
Also the original scripts for the analysis are not available anymore, which could have
revealed this information, even without having the original UE software code at hand.
Thus, due to the lack of documentation we are only able to reproduce the results of
[26] by communicating with some of the authors of the original publication.

The reproduction of Figure 4A of the original publication is a further and important
test whether our reimplementation is also correct for N>2 neurons. This is relevant
since the implementation requires a more generic, complex algorithm for the analysis
than the one that can be used for only N=2. In the case of two neurons, there is only
one pattern type which has to be analyzed (i.e. [1,1]). However, in the case of e.g. 3
neurons there are already 4 different spike patterns to analyze ([1,1,0], [0,1,1], [1,0,1],
and [1,1,1]), and even much more for more neurons (2% — N — 1). The statistics of
each of the patterns is performed separately and, therefore, the bookkeeping needs to
be carefully done.

The reproduction of Figure 4A is more complicated than reproducing Figure 2
due to additional reasons. First of all, the data were not available to us. After
requesting them from the first author of the original publication we received data
and were not able to reproduce the result - in terms of the UE results, but also the
data seemed slightly different. After further consultation with the original authors we
learned that the original Figure 4A was not generated by the Matlab implementation
used for Figure 2 but by another implementation in IDL. Both are not available to
us. However, we were told that the third author, MD, of the original publication
performed a thorough comparison of the two implementations at the time and the
final report on that investigation was made available to us. This enables us to define
the correct workflow that reproduces the original result, given we have the data in the
correct resolution at hand.

The reimplemented UE analysis software contains extensions for improving the
statistics that were developed after the original publication. On the one hand, it
contains the option to adjust the statistics to take into account cross-trial inhomo-
geneity by calculating the number of expected spike synchrony events based on the
firing rates in a trial-by-trial fashion (option: “analytic_TrialByTrial”) as suggested
in [15], in contrast to using trial averages of the firing rates. On the other hand, our
reimplementation offers the possibility to calculate the significance of the empirical
number of spike synchrony events based on a Monte Carlo approach (option: “surro-
gate_TrialByTrial”). Instead of computing the significance using a parametric distri-
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bution based on the estimate of the firing rates, the null-hypothesis of independence
is implemented by surrogate data [16, 17, 21]. By repeated intentional manipulation
of the original data, potential spike synchrony is deleted. Each of these surrogate
data created by this procedure are then searched - as the original data - for spike
synchrony, and these numbers create the distribution underlying the significance test
of the method. Obviously this version is considerably more computationally expensive
than the parametric approach used here for the reproduction of [26] and we are cur-
rently working on an HPC implementation to make use of parallelization. The Python
implementation of the UE method is publicly available in the open source software
package Elephant at http://neuralensemble.org/elephant/.

If the authors of the original paper would not have been accessible, we would not
have been able to reproduce the results. Nevertheless, here our final validation of the
reproduction is based on the values extracted from the vector graphic image (PDF)
in the original paper. In an optimal scenario, we would be able to exactly validate
the results based on a numerical comparison. To do so, all of the following pieces of
information would have had to be available at hand:

1. the original primary data

2. metadata describing the primary data in detail

3. the original statistics software package (e.g. Unitary Events)

4. the loading routine for the data

5. all specific code required to produce each figure of the original publication
6. detailed documentation of all code

7. the original software environment (with programs available in the original ver-
sions used), including, e.g. the interpreter /compiler (here: Matlab) and operating
system

8. unique identifiers of the data records that unambiguously identify data from
within the analysis code

In the analysis presented in this work, not even the original primary data (1),
recorded more than 20 years ago, but only a slightly preprocessed version is available.
However, even today many of the pieces of information listed above are often not made
available by scientists. In part, this is due to the enormous complexity of the task to
record all information in fine detail leading from the experiment to an analysis result.
Moreover, there is still a lack of software tools to support researchers in the process
of acquiring, storing, and organizing this information. Currently, there are emerging
approaches suggested for metadata annotation (2) of electrophysiological data, such
as the odML* framework (see, e.g. [11, 28]) for storing hierarchical collections of
metadata or the NIX® data format [2] for linking data and metadata. In our concrete
example, the information about the hardware limitations in storing the event times,
would have been essential information contained in the metadata. Using modern
tools for version control, points (3)-(6) can be easily addressed. There are emerging
approaches to keep software environment, i.e., the original Matlab version and the
operating system (7), e.g., by freezing the environment in a virtual machine. Point (8)
is still challenging, because it requires the data to be addressed in an unambiguous
manner from within the analysis scripts. Including data within the code repositories
is typically prohibitive due to the size of the data. A solution would be to deposit data
in public or private databases that allow data to be identified using a unique identifier

4https://github.com/G-Node/python-odml
Shttps://github.com/G-Node/nix/wiki
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in combination with a tool to generate a detailed provenance track of the analysis
process, but the implementation of tools and services for the workflows used in data
analysis of electrophysiological data is still an ongoing endeavor [3, 5]. In summary,
there are still components missing such that researchers are put into a position to build
complex data acquisition and analysis workflows that enable optimal reproducibility
in neuroscience.
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