000840130 001__ 840130
000840130 005__ 20210129231742.0
000840130 0247_ $$2doi$$a10.1002/aelm.201700294
000840130 0247_ $$2WOS$$aWOS:000417647400011
000840130 037__ $$aFZJ-2017-07690
000840130 041__ $$aEnglish
000840130 082__ $$a621.3
000840130 1001_ $$0P:(DE-HGF)0$$avon Witzleben, Moritz$$b0
000840130 245__ $$aInvestigation of the Impact of High Temperatures on the Switching Kinetics of Redox-Based Resistive Switching Cells using a High-Speed Nanoheater
000840130 260__ $$aChichester$$bWiley$$c2017
000840130 3367_ $$2DRIVER$$aarticle
000840130 3367_ $$2DataCite$$aOutput Types/Journal article
000840130 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1513087036_1948
000840130 3367_ $$2BibTeX$$aARTICLE
000840130 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840130 3367_ $$00$$2EndNote$$aJournal Article
000840130 520__ $$aIonic transport greatly influences the switching kinetics of filamentary resistive switching memories and depends strongly on temperature and electric fields. To separate the impact of both parameters on the switching kinetics and to further deepen the understanding of the influence of local Joule heating, a nanometer-sized heating structure is employed. It consists of a 100 nm wide Pt electrode which, due to Joule heating, serves as heating source upon an electrical stimulus. These self-heating properties are underlined by a 3D finite elements simulation model, which confirms a temperature increase of almost 500 K. Experimental electrical pulse measurements indicate that for this temperature a steady state is achieved in less than 100 ns. By employing this heating structure, kinetic measurements of a Pt/Ta2O5/Ta cell are performed at different temperatures and reveal that significantly decreased SET times are obtained with increasing temperature. This effect is accompanied by an increasing slope of the current prior to the SET event. The experimental results are further confirmed by predictions of an analytical model based on ionic conduction.
000840130 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000840130 588__ $$aDataset connected to CrossRef
000840130 7001_ $$0P:(DE-HGF)0$$aFleck, Karsten$$b1
000840130 7001_ $$0P:(DE-Juel1)165703$$aFunck, Carsten$$b2
000840130 7001_ $$0P:(DE-HGF)0$$aBaumkötter, Brigitte$$b3
000840130 7001_ $$0P:(DE-HGF)0$$aZuric, Milena$$b4
000840130 7001_ $$0P:(DE-HGF)0$$aIdt, Alexander$$b5
000840130 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b6
000840130 7001_ $$0P:(DE-HGF)0$$aBöttger, Ulrich$$b7
000840130 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b8$$eCorresponding author
000840130 7001_ $$0P:(DE-Juel1)157669$$aBreuer, Thomas$$b9
000840130 773__ $$0PERI:(DE-600)2810904-1$$a10.1002/aelm.201700294$$gp. 1700294 -$$n12$$p1700294$$tAdvanced electronic materials$$v3$$x2199-160X$$y2017
000840130 8564_ $$uhttps://juser.fz-juelich.de/record/840130/files/Witzleben_et_al-2017-Advanced_Electronic_Materials.pdf$$yRestricted
000840130 8564_ $$uhttps://juser.fz-juelich.de/record/840130/files/Witzleben_et_al-2017-Advanced_Electronic_Materials.gif?subformat=icon$$xicon$$yRestricted
000840130 8564_ $$uhttps://juser.fz-juelich.de/record/840130/files/Witzleben_et_al-2017-Advanced_Electronic_Materials.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840130 8564_ $$uhttps://juser.fz-juelich.de/record/840130/files/Witzleben_et_al-2017-Advanced_Electronic_Materials.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840130 8564_ $$uhttps://juser.fz-juelich.de/record/840130/files/Witzleben_et_al-2017-Advanced_Electronic_Materials.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840130 8564_ $$uhttps://juser.fz-juelich.de/record/840130/files/Witzleben_et_al-2017-Advanced_Electronic_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840130 909CO $$ooai:juser.fz-juelich.de:840130$$pVDB
000840130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165703$$aForschungszentrum Jülich$$b2$$kFZJ
000840130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b6$$kFZJ
000840130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b8$$kFZJ
000840130 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000840130 9141_ $$y2017
000840130 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ELECTRON MATER : 2015
000840130 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840130 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840130 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840130 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840130 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840130 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000840130 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000840130 980__ $$ajournal
000840130 980__ $$aVDB
000840130 980__ $$aI:(DE-Juel1)PGI-7-20110106
000840130 980__ $$aI:(DE-82)080009_20140620
000840130 980__ $$aUNRESTRICTED