001     840130
005     20210129231742.0
024 7 _ |a 10.1002/aelm.201700294
|2 doi
024 7 _ |a WOS:000417647400011
|2 WOS
037 _ _ |a FZJ-2017-07690
041 _ _ |a English
082 _ _ |a 621.3
100 1 _ |a von Witzleben, Moritz
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Investigation of the Impact of High Temperatures on the Switching Kinetics of Redox-Based Resistive Switching Cells using a High-Speed Nanoheater
260 _ _ |a Chichester
|c 2017
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1513087036_1948
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ionic transport greatly influences the switching kinetics of filamentary resistive switching memories and depends strongly on temperature and electric fields. To separate the impact of both parameters on the switching kinetics and to further deepen the understanding of the influence of local Joule heating, a nanometer-sized heating structure is employed. It consists of a 100 nm wide Pt electrode which, due to Joule heating, serves as heating source upon an electrical stimulus. These self-heating properties are underlined by a 3D finite elements simulation model, which confirms a temperature increase of almost 500 K. Experimental electrical pulse measurements indicate that for this temperature a steady state is achieved in less than 100 ns. By employing this heating structure, kinetic measurements of a Pt/Ta2O5/Ta cell are performed at different temperatures and reveal that significantly decreased SET times are obtained with increasing temperature. This effect is accompanied by an increasing slope of the current prior to the SET event. The experimental results are further confirmed by predictions of an analytical model based on ionic conduction.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fleck, Karsten
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Funck, Carsten
|0 P:(DE-Juel1)165703
|b 2
700 1 _ |a Baumkötter, Brigitte
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zuric, Milena
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Idt, Alexander
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 6
700 1 _ |a Böttger, Ulrich
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 8
|e Corresponding author
700 1 _ |a Breuer, Thomas
|0 P:(DE-Juel1)157669
|b 9
773 _ _ |a 10.1002/aelm.201700294
|g p. 1700294 -
|0 PERI:(DE-600)2810904-1
|n 12
|p 1700294
|t Advanced electronic materials
|v 3
|y 2017
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/840130/files/Witzleben_et_al-2017-Advanced_Electronic_Materials.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840130/files/Witzleben_et_al-2017-Advanced_Electronic_Materials.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840130/files/Witzleben_et_al-2017-Advanced_Electronic_Materials.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840130/files/Witzleben_et_al-2017-Advanced_Electronic_Materials.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840130/files/Witzleben_et_al-2017-Advanced_Electronic_Materials.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840130/files/Witzleben_et_al-2017-Advanced_Electronic_Materials.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840130
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165703
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21