000840133 001__ 840133
000840133 005__ 20240711101500.0
000840133 0247_ $$2doi$$a10.1016/j.ijhydene.2017.04.164
000840133 0247_ $$2ISSN$$a0360-3199
000840133 0247_ $$2ISSN$$a1879-3487
000840133 0247_ $$2WOS$$aWOS:000407657900049
000840133 037__ $$aFZJ-2017-07693
000840133 082__ $$a660
000840133 1001_ $$00000-0002-2148-6172$$aHong, Po$$b0
000840133 245__ $$aModeling and analysis of internal water transfer behavior of PEM fuel cell of large surface area
000840133 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000840133 3367_ $$2DRIVER$$aarticle
000840133 3367_ $$2DataCite$$aOutput Types/Journal article
000840133 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511509982_11658
000840133 3367_ $$2BibTeX$$aARTICLE
000840133 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840133 3367_ $$00$$2EndNote$$aJournal Article
000840133 520__ $$aThe PEM fuel cell has been widely used in the area of transportation and power station. The surface area of a fuel cell is enlarged to provide high enough power but the problem of analysis of internal water content behavior follows tightly. Many scholars have investigated the mathematical models of a small fuel cell and validated them through experiment. Besides, the introduction of AC impedance technique helps find relationship between water content and membrane resistance. Based on their research, an approach is put forward in this paper to model and analyze the internal water content behavior in a fuel cell of large surface area. For large surface area, three special cases are studied according to the actual operating states at cathode outlet. The first case applies to a fuel cell with no saturated water vapor at both outlets while in the second and third case, the fuel cell is divided into an electrochemical reaction zone and no reaction zone owing to emerging liquid water. The indicators of model are the water content profile inside membrane and the total membrane resistance. The simulation results show that the net water transfer coefficient has significant influence on the performance of the membrane and the constituents of anode side are easy to be varied. In addition, when the fuel cell is operated in counter-flow mode with emerging liquid water, the only back diffusion of water from cathode to anode helps improve the state of the membrane.
000840133 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000840133 588__ $$aDataset connected to CrossRef
000840133 7001_ $$0P:(DE-Juel1)168338$$aXu, Liangfei$$b1
000840133 7001_ $$0P:(DE-HGF)0$$aLi, Jianqiu$$b2$$eCorresponding author
000840133 7001_ $$0P:(DE-HGF)0$$aOuyang, Minggao$$b3
000840133 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2017.04.164$$gVol. 42, no. 29, p. 18540 - 18550$$n29$$p18540 - 18550$$tInternational journal of hydrogen energy$$v42$$x0360-3199$$y2017
000840133 8564_ $$uhttps://juser.fz-juelich.de/record/840133/files/1-s2.0-S0360319917315720-main.pdf$$yRestricted
000840133 8564_ $$uhttps://juser.fz-juelich.de/record/840133/files/1-s2.0-S0360319917315720-main.gif?subformat=icon$$xicon$$yRestricted
000840133 8564_ $$uhttps://juser.fz-juelich.de/record/840133/files/1-s2.0-S0360319917315720-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840133 8564_ $$uhttps://juser.fz-juelich.de/record/840133/files/1-s2.0-S0360319917315720-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840133 8564_ $$uhttps://juser.fz-juelich.de/record/840133/files/1-s2.0-S0360319917315720-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840133 8564_ $$uhttps://juser.fz-juelich.de/record/840133/files/1-s2.0-S0360319917315720-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840133 909CO $$ooai:juser.fz-juelich.de:840133$$pVDB
000840133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168338$$aForschungszentrum Jülich$$b1$$kFZJ
000840133 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000840133 9141_ $$y2017
000840133 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000840133 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840133 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840133 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840133 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840133 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840133 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840133 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840133 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840133 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840133 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000840133 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840133 920__ $$lyes
000840133 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000840133 980__ $$ajournal
000840133 980__ $$aVDB
000840133 980__ $$aI:(DE-Juel1)IEK-3-20101013
000840133 980__ $$aUNRESTRICTED
000840133 981__ $$aI:(DE-Juel1)ICE-2-20101013