001     840133
005     20240711101500.0
024 7 _ |a 10.1016/j.ijhydene.2017.04.164
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000407657900049
|2 WOS
037 _ _ |a FZJ-2017-07693
082 _ _ |a 660
100 1 _ |a Hong, Po
|0 0000-0002-2148-6172
|b 0
245 _ _ |a Modeling and analysis of internal water transfer behavior of PEM fuel cell of large surface area
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511509982_11658
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The PEM fuel cell has been widely used in the area of transportation and power station. The surface area of a fuel cell is enlarged to provide high enough power but the problem of analysis of internal water content behavior follows tightly. Many scholars have investigated the mathematical models of a small fuel cell and validated them through experiment. Besides, the introduction of AC impedance technique helps find relationship between water content and membrane resistance. Based on their research, an approach is put forward in this paper to model and analyze the internal water content behavior in a fuel cell of large surface area. For large surface area, three special cases are studied according to the actual operating states at cathode outlet. The first case applies to a fuel cell with no saturated water vapor at both outlets while in the second and third case, the fuel cell is divided into an electrochemical reaction zone and no reaction zone owing to emerging liquid water. The indicators of model are the water content profile inside membrane and the total membrane resistance. The simulation results show that the net water transfer coefficient has significant influence on the performance of the membrane and the constituents of anode side are easy to be varied. In addition, when the fuel cell is operated in counter-flow mode with emerging liquid water, the only back diffusion of water from cathode to anode helps improve the state of the membrane.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Xu, Liangfei
|0 P:(DE-Juel1)168338
|b 1
700 1 _ |a Li, Jianqiu
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Ouyang, Minggao
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1016/j.ijhydene.2017.04.164
|g Vol. 42, no. 29, p. 18540 - 18550
|0 PERI:(DE-600)1484487-4
|n 29
|p 18540 - 18550
|t International journal of hydrogen energy
|v 42
|y 2017
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/840133/files/1-s2.0-S0360319917315720-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840133/files/1-s2.0-S0360319917315720-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840133/files/1-s2.0-S0360319917315720-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840133/files/1-s2.0-S0360319917315720-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840133/files/1-s2.0-S0360319917315720-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840133/files/1-s2.0-S0360319917315720-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840133
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168338
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21