000840135 001__ 840135
000840135 005__ 20240711101511.0
000840135 0247_ $$2doi$$a10.1016/j.ijhydene.2017.03.191
000840135 0247_ $$2ISSN$$a0360-3199
000840135 0247_ $$2ISSN$$a1879-3487
000840135 0247_ $$2WOS$$aWOS:000402347400022
000840135 037__ $$aFZJ-2017-07695
000840135 082__ $$a660
000840135 1001_ $$0P:(DE-Juel1)168338$$aXu, Liangfei$$b0$$eCorresponding author
000840135 245__ $$aRobust control of internal states in a polymer electrolyte membrane fuel cell air-feed system by considering actuator properties
000840135 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000840135 3367_ $$2DRIVER$$aarticle
000840135 3367_ $$2DataCite$$aOutput Types/Journal article
000840135 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511510268_11657
000840135 3367_ $$2BibTeX$$aARTICLE
000840135 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840135 3367_ $$00$$2EndNote$$aJournal Article
000840135 520__ $$aAir stoichiometry, pressure, and relative humidity in the air-feed system of a vehicular polymer electrolyte membrane fuel cell (PEMFC) influence efficiency, durability and reliability. It is critical to develop robust control algorithms for these internal states to improve system performance. There is limited extant research on designing robust control algorithms that consider the three internal states as well as the constraints of real actuators, such as an air compressor, a membrane humidifier, and a back-up pressure valve (BPV). This study examines robust control strategies for the three internal states based on adaptive second order sliding mode (ASOSM) and nonlinear proportional-integral (NPI) feedback control algorithms. In the study, control targets are established based on stable properties of the PEMFC system. The study involves proposing and comparing five control strategies that are a combination of NPI and ASOSM algorithms. The following results are obtained: (1) the stable control targets for the three internal states are followed adequately by using an NPI or an ASOSM algorithm and differences only exists in dynamic processes; (2) with respect to the control of air stoichiometry, an NPI algorithm performs better than an ASOSM algorithm as chattering in air stoichiometry can be avoided and the convergence time to the target value is acceptable; (3) with respect to the control of cathodic pressure, an ASOSM algorithm performs better than an NPI algorithm as the overshoots in cathodic pressures can be effectively reduced; (4) with respect to the control of relative humidity, both NPI and ASOSM algorithms lead to a practical bang–bang strategy. The strategy that performs the best among the five strategies is selected, and the robustness of the selected strategy with respect to parameter uncertainties is verified.
000840135 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000840135 588__ $$aDataset connected to CrossRef
000840135 7001_ $$0P:(DE-HGF)0$$aHu, Junming$$b1
000840135 7001_ $$0P:(DE-HGF)0$$aCheng, Siliang$$b2
000840135 7001_ $$0P:(DE-HGF)0$$aFang, Chuan$$b3
000840135 7001_ $$0P:(DE-HGF)0$$aLi, Jianqiu$$b4
000840135 7001_ $$0P:(DE-HGF)0$$aOuyang, Minggao$$b5
000840135 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b6
000840135 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2017.03.191$$gVol. 42, no. 18, p. 13171 - 13191$$n18$$p13171 - 13191$$tInternational journal of hydrogen energy$$v42$$x0360-3199$$y2017
000840135 8564_ $$uhttps://juser.fz-juelich.de/record/840135/files/1-s2.0-S0360319917312375-main.pdf$$yRestricted
000840135 8564_ $$uhttps://juser.fz-juelich.de/record/840135/files/1-s2.0-S0360319917312375-main.gif?subformat=icon$$xicon$$yRestricted
000840135 8564_ $$uhttps://juser.fz-juelich.de/record/840135/files/1-s2.0-S0360319917312375-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840135 8564_ $$uhttps://juser.fz-juelich.de/record/840135/files/1-s2.0-S0360319917312375-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840135 8564_ $$uhttps://juser.fz-juelich.de/record/840135/files/1-s2.0-S0360319917312375-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840135 8564_ $$uhttps://juser.fz-juelich.de/record/840135/files/1-s2.0-S0360319917312375-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840135 909CO $$ooai:juser.fz-juelich.de:840135$$pVDB
000840135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168338$$aForschungszentrum Jülich$$b0$$kFZJ
000840135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b6$$kFZJ
000840135 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000840135 9141_ $$y2017
000840135 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000840135 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840135 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840135 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840135 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840135 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840135 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840135 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840135 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840135 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840135 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000840135 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840135 920__ $$lyes
000840135 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000840135 980__ $$ajournal
000840135 980__ $$aVDB
000840135 980__ $$aI:(DE-Juel1)IEK-3-20101013
000840135 980__ $$aUNRESTRICTED
000840135 981__ $$aI:(DE-Juel1)ICE-2-20101013