001     840135
005     20240711101511.0
024 7 _ |a 10.1016/j.ijhydene.2017.03.191
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000402347400022
|2 WOS
037 _ _ |a FZJ-2017-07695
082 _ _ |a 660
100 1 _ |a Xu, Liangfei
|0 P:(DE-Juel1)168338
|b 0
|e Corresponding author
245 _ _ |a Robust control of internal states in a polymer electrolyte membrane fuel cell air-feed system by considering actuator properties
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511510268_11657
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Air stoichiometry, pressure, and relative humidity in the air-feed system of a vehicular polymer electrolyte membrane fuel cell (PEMFC) influence efficiency, durability and reliability. It is critical to develop robust control algorithms for these internal states to improve system performance. There is limited extant research on designing robust control algorithms that consider the three internal states as well as the constraints of real actuators, such as an air compressor, a membrane humidifier, and a back-up pressure valve (BPV). This study examines robust control strategies for the three internal states based on adaptive second order sliding mode (ASOSM) and nonlinear proportional-integral (NPI) feedback control algorithms. In the study, control targets are established based on stable properties of the PEMFC system. The study involves proposing and comparing five control strategies that are a combination of NPI and ASOSM algorithms. The following results are obtained: (1) the stable control targets for the three internal states are followed adequately by using an NPI or an ASOSM algorithm and differences only exists in dynamic processes; (2) with respect to the control of air stoichiometry, an NPI algorithm performs better than an ASOSM algorithm as chattering in air stoichiometry can be avoided and the convergence time to the target value is acceptable; (3) with respect to the control of cathodic pressure, an ASOSM algorithm performs better than an NPI algorithm as the overshoots in cathodic pressures can be effectively reduced; (4) with respect to the control of relative humidity, both NPI and ASOSM algorithms lead to a practical bang–bang strategy. The strategy that performs the best among the five strategies is selected, and the robustness of the selected strategy with respect to parameter uncertainties is verified.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hu, Junming
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cheng, Siliang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fang, Chuan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Li, Jianqiu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ouyang, Minggao
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 6
773 _ _ |a 10.1016/j.ijhydene.2017.03.191
|g Vol. 42, no. 18, p. 13171 - 13191
|0 PERI:(DE-600)1484487-4
|n 18
|p 13171 - 13191
|t International journal of hydrogen energy
|v 42
|y 2017
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/840135/files/1-s2.0-S0360319917312375-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840135/files/1-s2.0-S0360319917312375-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840135/files/1-s2.0-S0360319917312375-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840135/files/1-s2.0-S0360319917312375-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840135/files/1-s2.0-S0360319917312375-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840135/files/1-s2.0-S0360319917312375-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840135
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168338
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21