000840140 001__ 840140
000840140 005__ 20210129231744.0
000840140 0247_ $$2doi$$a10.1021/acs.est.7b03322
000840140 0247_ $$2ISSN$$a0013-936X
000840140 0247_ $$2ISSN$$a1520-5851
000840140 0247_ $$2pmid$$apmid:29065692
000840140 0247_ $$2WOS$$aWOS:000416496700022
000840140 0247_ $$2Handle$$a2128/18655
000840140 037__ $$aFZJ-2017-07699
000840140 082__ $$a050
000840140 1001_ $$0P:(DE-Juel1)167455$$aWang, Liming$$b0$$eCorresponding author
000840140 245__ $$aDiffusion-Ordered Nuclear Magnetic Resonance Spectroscopy (DOSY-NMR): A Novel Tool for Identification of Phosphorus Compounds in Soil Extracts
000840140 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2017
000840140 3367_ $$2DRIVER$$aarticle
000840140 3367_ $$2DataCite$$aOutput Types/Journal article
000840140 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1527082613_10479
000840140 3367_ $$2BibTeX$$aARTICLE
000840140 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840140 3367_ $$00$$2EndNote$$aJournal Article
000840140 520__ $$aLiquid-state, one-dimension 31P nuclear magnetic resonance spectroscopy (NMR) has greatly advanced our understanding of the composition of organic phosphorus in the environment. However, the correct assignment of signals is complicated by overlapping and shifting signals in different types of soils. We applied therefore for the first time diffusion-ordered spectroscopy (DOSY) to soil extracts, allowing us to separate phosphorus components in the second domain based on their translational diffusion coefficients. After successful application to a mixture of 14 model compounds, diffusion rates correlated closely with the molecular weight of the individual compound in aqueous solution (R2 = 0.97). The method was then applied to NaOH/EDTA extracts of a grassland soil, of which paramagnetic contaminations were removed with sodium sulfide following high-velocity centrifugation (21 500g, 45 min) at 4 °C. Diffusion rates in soil extracts were again closely related to molecular weight (R2 = 0.98), varying from 163.9 to 923.8 Da. However, our DOSY application failed for a forest soil with low organic phosphorus content. Overall, DOSY did help to clearly identify specific NMR signals like myo- and scyllo-inositol hexakisphosphate. It thus provides a more confident signal assignment than 1D 31P NMR, although currently the ubiquitous use of this novel methodology is still limited to soils with high organic phosphorus content.
000840140 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000840140 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000840140 588__ $$aDataset connected to CrossRef
000840140 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b1
000840140 7001_ $$0P:(DE-Juel1)133857$$aWillbold, Sabine$$b2
000840140 773__ $$0PERI:(DE-600)1465132-4$$a10.1021/acs.est.7b03322$$gVol. 51, no. 22, p. 13256 - 13264$$n22$$p13256 - 13264$$tEnvironmental science & technology$$v51$$x1520-5851$$y2017
000840140 8564_ $$uhttps://juser.fz-juelich.de/record/840140/files/acs.est.7b03322.pdf$$yRestricted
000840140 8564_ $$uhttps://juser.fz-juelich.de/record/840140/files/Manuscript%20File.pdf$$yPublished on 2017-10-25. Available in OpenAccess from 2018-10-25.
000840140 8564_ $$uhttps://juser.fz-juelich.de/record/840140/files/acs.est.7b03322.gif?subformat=icon$$xicon$$yRestricted
000840140 8564_ $$uhttps://juser.fz-juelich.de/record/840140/files/acs.est.7b03322.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840140 8564_ $$uhttps://juser.fz-juelich.de/record/840140/files/acs.est.7b03322.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840140 8564_ $$uhttps://juser.fz-juelich.de/record/840140/files/acs.est.7b03322.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840140 8564_ $$uhttps://juser.fz-juelich.de/record/840140/files/acs.est.7b03322.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840140 8564_ $$uhttps://juser.fz-juelich.de/record/840140/files/Manuscript%20File.gif?subformat=icon$$xicon$$yPublished on 2017-10-25. Available in OpenAccess from 2018-10-25.
000840140 8564_ $$uhttps://juser.fz-juelich.de/record/840140/files/Manuscript%20File.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2017-10-25. Available in OpenAccess from 2018-10-25.
000840140 8564_ $$uhttps://juser.fz-juelich.de/record/840140/files/Manuscript%20File.jpg?subformat=icon-180$$xicon-180$$yPublished on 2017-10-25. Available in OpenAccess from 2018-10-25.
000840140 8564_ $$uhttps://juser.fz-juelich.de/record/840140/files/Manuscript%20File.jpg?subformat=icon-640$$xicon-640$$yPublished on 2017-10-25. Available in OpenAccess from 2018-10-25.
000840140 8564_ $$uhttps://juser.fz-juelich.de/record/840140/files/Manuscript%20File.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-10-25. Available in OpenAccess from 2018-10-25.
000840140 909CO $$ooai:juser.fz-juelich.de:840140$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000840140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167455$$aForschungszentrum Jülich$$b0$$kFZJ
000840140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b1$$kFZJ
000840140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133857$$aForschungszentrum Jülich$$b2$$kFZJ
000840140 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000840140 9141_ $$y2017
000840140 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840140 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000840140 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840140 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000840140 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000840140 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON SCI TECHNOL : 2015
000840140 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENVIRON SCI TECHNOL : 2015
000840140 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840140 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840140 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840140 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840140 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000840140 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840140 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840140 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840140 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840140 920__ $$lyes
000840140 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x0
000840140 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x1
000840140 980__ $$ajournal
000840140 980__ $$aVDB
000840140 980__ $$aUNRESTRICTED
000840140 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000840140 980__ $$aI:(DE-Juel1)IBG-3-20101118
000840140 9801_ $$aFullTexts