001     840143
005     20240711101519.0
024 7 _ |a 10.1016/j.ijhydene.2017.10.060
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000419417600020
|2 WOS
037 _ _ |a FZJ-2017-07702
082 _ _ |a 660
100 1 _ |a Xu, Liangfei
|0 P:(DE-Juel1)168338
|b 0
|e Corresponding author
245 _ _ |a Methodology of Designing Durability Test Protocol for Vehicular Fuel Cell System Operated in Soft Run Mode Based on Statistic Results of On-road Data
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515393440_28988
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In a polymer electrolyte membrane (PEM) fuel cell bus, there are at least two power sources, e.g., a hydrogen fuel cell system (FCS) and an energy storage system (ESS). Depending on powertrain configuration and control strategies, an FCS can work in different modes, which can be generally classified into so-called power follow (PF) and soft run (SR) modes. In the SR mode, the FCS serves as a stationary power source, and the ESS provides the dynamic power. Nowadays, most of the fuel cell buses in China operate in this mode, since it has advantages of long working lifetime. In order to evaluate the aging behavior of fuel cell stacks under conditions encountered in this kind of fuel cell buses, new durability test protocols based on statistical results obtained during actual driving tests are required. In this research, we propose a methodology for designing fuel cell durability test protocols that correspond to the SR mode. The powertrain configuration and control strategy are described herein, followed by a presentation of the statistical data for the real driving cycle in a demonstration project. Equations are derived based on constraints of keeping the battery in charging balance. One test protocol is presented as an example, and compared to existing protocols with respect to common factors, such as time at open circuit voltage and root-mean-square power.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Li, Jianqiu
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Reimer, Uwe
|0 P:(DE-Juel1)6697
|b 2
|u fzj
700 1 _ |a Huang, Haiyan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hu, Zunyan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jiang, Hongliang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Janssen, Holger
|0 P:(DE-Juel1)129863
|b 6
|u fzj
700 1 _ |a Ouyang, Minggao
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 8
|u fzj
773 _ _ |a 10.1016/j.ijhydene.2017.10.060
|g Vol. 42, no. 50, p. 29840 - 29851
|0 PERI:(DE-600)1484487-4
|n 50
|p 29840 - 29851
|t International journal of hydrogen energy
|v 42
|y 2017
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/840143/files/1-s2.0-S0360319917340375-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840143/files/1-s2.0-S0360319917340375-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840143/files/1-s2.0-S0360319917340375-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840143/files/1-s2.0-S0360319917340375-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840143/files/1-s2.0-S0360319917340375-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840143/files/1-s2.0-S0360319917340375-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840143
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168338
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)6697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129863
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21