001     840144
005     20240711101511.0
024 7 _ |a 10.1149/2.0541802jes
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2128/16478
|2 Handle
024 7 _ |a WOS:000431786800104
|2 WOS
037 _ _ |a FZJ-2017-07703
082 _ _ |a 540
100 1 _ |a Fang, Qingping
|0 P:(DE-Juel1)145945
|b 0
|e Corresponding author
245 _ _ |a Electrochemical Performance and Preliminary Post-Mortem Analysis of a Solid Oxide Electrolyzer Stack with 20,000 h of Operation
260 _ _ |a Pennington, NJ
|c 2018
|b Electrochemical Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515578735_18131
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A long-term test with a two-layer solid oxide cell stack was carried out for more than 20,000 hours. The stack was mainly characterized in a furnace environment in electrolysis mode, with 50% humidification of H2 at 800°C. The endothermic operation was carried out with a current density of −0.5 Acm−2 and steam conversion rate of 50%. Electrolysis at lower temperatures (i.e., 700°C and 750°C) and fuel cell operation (with 0.5 Acm−2 and fuel utilization of 50%) at 800°C were also carried out (<2000 h each) for comparison. The voltage and area specific resistance degradation rates were ∼0.6%/kh and 8.2%/kh after ∼18,460 hours of operation. In total, the stack was operated above 700°C for more than 20,000 hours. Impedance measurement and analysis showed that the increase of ohmic resistance was the main degradation phenomenon, while electrode polarizations were kept nearly constant before a severe burning took place in one layer. Ni-depletion in fuel electrodes was confirmed during post-mortem analysis, which was assumed to be the major degradation mechanism observed. The stack performance and degradation analysis under different working conditions, as well as the results of preliminary post-mortem analysis will be presented.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Frey, Carolin
|0 P:(DE-Juel1)171659
|b 1
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 2
700 1 _ |a Blum, Ludger
|0 P:(DE-Juel1)129828
|b 3
773 _ _ |a 10.1149/2.0541802jes
|g Vol. 165, no. 2, p. F38 - F45
|0 PERI:(DE-600)2002179-3
|n 2
|p F38 - F45
|t Journal of the Electrochemical Society
|v 165
|y 2018
|x 0013-4651
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/840144/files/J.%20Electrochem.%20Soc.-2018-Fang-F38-45.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/840144/files/J.%20Electrochem.%20Soc.-2018-Fang-F38-45.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/840144/files/J.%20Electrochem.%20Soc.-2018-Fang-F38-45.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/840144/files/J.%20Electrochem.%20Soc.-2018-Fang-F38-45.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/840144/files/J.%20Electrochem.%20Soc.-2018-Fang-F38-45.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/840144/files/J.%20Electrochem.%20Soc.-2018-Fang-F38-45.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:840144
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145945
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171659
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129828
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21