000840145 001__ 840145
000840145 005__ 20240711101522.0
000840145 0247_ $$2doi$$a10.1016/j.electacta.2017.11.180
000840145 0247_ $$2ISSN$$a0013-4686
000840145 0247_ $$2ISSN$$a1873-3859
000840145 0247_ $$2WOS$$aWOS:000418324800138
000840145 0247_ $$2altmetric$$aaltmetric:31449310
000840145 037__ $$aFZJ-2017-07704
000840145 082__ $$a540
000840145 1001_ $$0P:(DE-Juel1)166198$$aYan, Yulin$$b0$$eCorresponding author
000840145 245__ $$aPerformance and Degradation of a SOEC Stack with Different Cell Components
000840145 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000840145 3367_ $$2DRIVER$$aarticle
000840145 3367_ $$2DataCite$$aOutput Types/Journal article
000840145 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515393545_28988
000840145 3367_ $$2BibTeX$$aARTICLE
000840145 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840145 3367_ $$00$$2EndNote$$aJournal Article
000840145 520__ $$aHigh temperature water electrolysis with solid oxide electrolysis cells (SOECs) is a promising method for hydrogen production. In order to study the performance and degradation behavior of cells with different cell components in electrolysis mode, a four-cell stack was assembled that used JÜLICH's F10 design with two types of air electrodes based on La0.6Sr0.4CoO3−δ (LSC) and La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF). A PVD-prepared GDC layer was applied to LSCF cells while a screen-printing GDC layer was used in the LSC cells. The performance of the stack was first characterized with IV-curve measurements in both SOFC and SOEC modes within the temperature range of 700–800 °C. The durability of the stack was investigated by conducting a long-term stationary electrolysis operation with a constant current density of −0.5 Acm−2 and steam conversion rate of 50% at 800 °C. Electrochemical Impedance Spectroscopy (EIS) was used to study the electrochemical performance of the stack, as well as the degradation behavior during long-term electrolysis operation. The method “Distribution of Relaxation Times” (DRT) was applied for the further analysis of the EIS data, and the DRT results have successfully supported the stack degradation analysis.
000840145 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000840145 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000840145 588__ $$aDataset connected to CrossRef
000840145 7001_ $$0P:(DE-Juel1)145945$$aFang, Qingping$$b1
000840145 7001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b2
000840145 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b3
000840145 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2017.11.180$$gVol. 258, p. 1254 - 1261$$p1254 - 1261$$tElectrochimica acta$$v258$$x0013-4686$$y2017
000840145 8564_ $$uhttps://juser.fz-juelich.de/record/840145/files/1-s2.0-S0013468617325422-main.pdf$$yRestricted
000840145 8564_ $$uhttps://juser.fz-juelich.de/record/840145/files/1-s2.0-S0013468617325422-main.gif?subformat=icon$$xicon$$yRestricted
000840145 8564_ $$uhttps://juser.fz-juelich.de/record/840145/files/1-s2.0-S0013468617325422-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840145 8564_ $$uhttps://juser.fz-juelich.de/record/840145/files/1-s2.0-S0013468617325422-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840145 8564_ $$uhttps://juser.fz-juelich.de/record/840145/files/1-s2.0-S0013468617325422-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840145 8564_ $$uhttps://juser.fz-juelich.de/record/840145/files/1-s2.0-S0013468617325422-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840145 909CO $$ooai:juser.fz-juelich.de:840145$$pVDB
000840145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166198$$aForschungszentrum Jülich$$b0$$kFZJ
000840145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145945$$aForschungszentrum Jülich$$b1$$kFZJ
000840145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich$$b2$$kFZJ
000840145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b3$$kFZJ
000840145 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000840145 9141_ $$y2017
000840145 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840145 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2015
000840145 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840145 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840145 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840145 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840145 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840145 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840145 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840145 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840145 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840145 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840145 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840145 920__ $$lyes
000840145 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000840145 980__ $$ajournal
000840145 980__ $$aVDB
000840145 980__ $$aI:(DE-Juel1)IEK-3-20101013
000840145 980__ $$aUNRESTRICTED
000840145 981__ $$aI:(DE-Juel1)ICE-2-20101013