001     840145
005     20240711101522.0
024 7 _ |a 10.1016/j.electacta.2017.11.180
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a WOS:000418324800138
|2 WOS
024 7 _ |a altmetric:31449310
|2 altmetric
037 _ _ |a FZJ-2017-07704
082 _ _ |a 540
100 1 _ |a Yan, Yulin
|0 P:(DE-Juel1)166198
|b 0
|e Corresponding author
245 _ _ |a Performance and Degradation of a SOEC Stack with Different Cell Components
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515393545_28988
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High temperature water electrolysis with solid oxide electrolysis cells (SOECs) is a promising method for hydrogen production. In order to study the performance and degradation behavior of cells with different cell components in electrolysis mode, a four-cell stack was assembled that used JÜLICH's F10 design with two types of air electrodes based on La0.6Sr0.4CoO3−δ (LSC) and La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF). A PVD-prepared GDC layer was applied to LSCF cells while a screen-printing GDC layer was used in the LSC cells. The performance of the stack was first characterized with IV-curve measurements in both SOFC and SOEC modes within the temperature range of 700–800 °C. The durability of the stack was investigated by conducting a long-term stationary electrolysis operation with a constant current density of −0.5 Acm−2 and steam conversion rate of 50% at 800 °C. Electrochemical Impedance Spectroscopy (EIS) was used to study the electrochemical performance of the stack, as well as the degradation behavior during long-term electrolysis operation. The method “Distribution of Relaxation Times” (DRT) was applied for the further analysis of the EIS data, and the DRT results have successfully supported the stack degradation analysis.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fang, Qingping
|0 P:(DE-Juel1)145945
|b 1
700 1 _ |a Blum, Ludger
|0 P:(DE-Juel1)129828
|b 2
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 3
773 _ _ |a 10.1016/j.electacta.2017.11.180
|g Vol. 258, p. 1254 - 1261
|0 PERI:(DE-600)1483548-4
|p 1254 - 1261
|t Electrochimica acta
|v 258
|y 2017
|x 0013-4686
856 4 _ |u https://juser.fz-juelich.de/record/840145/files/1-s2.0-S0013468617325422-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840145/files/1-s2.0-S0013468617325422-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840145/files/1-s2.0-S0013468617325422-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840145/files/1-s2.0-S0013468617325422-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840145/files/1-s2.0-S0013468617325422-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840145/files/1-s2.0-S0013468617325422-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840145
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166198
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145945
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129828
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21