000840160 001__ 840160
000840160 005__ 20210129231747.0
000840160 0247_ $$2doi$$a10.1103/PhysRevLett.115.235502
000840160 0247_ $$2ISSN$$a0031-9007
000840160 0247_ $$2ISSN$$a1079-7114
000840160 0247_ $$2ISSN$$a1092-0145
000840160 0247_ $$2Handle$$a2128/15957
000840160 0247_ $$2pmid$$apmid:26684123
000840160 0247_ $$2WOS$$aWOS:000365881100010
000840160 037__ $$aFZJ-2017-07715
000840160 082__ $$a550
000840160 1001_ $$0P:(DE-HGF)0$$aStoffers, A.$$b0$$eCorresponding author
000840160 245__ $$aComplex Nanotwin Substructure of an Asymmetric Σ 9 Tilt Grain Boundary in a Silicon Polycrystal
000840160 260__ $$aCollege Park, Md.$$bAPS$$c2015
000840160 3367_ $$2DRIVER$$aarticle
000840160 3367_ $$2DataCite$$aOutput Types/Journal article
000840160 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511516759_11661
000840160 3367_ $$2BibTeX$$aARTICLE
000840160 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840160 3367_ $$00$$2EndNote$$aJournal Article
000840160 520__ $$aGrain boundaries in materials have substantial influences on device properties, for instance on mechanical stability or electronic minority carrier lifetime in multicrystalline silicon solar cells. This applies especially to asymmetric, less ordered or faceted interface portions. Here, we present the complex atomic interface structure of an asymmetric Σ9 tilt grain boundary in silicon, observed by high resolution scanning transmission electron microscopy (HR-STEM) and explained by atomistic modeling and computer simulation. Structural optimization of interface models for the asymmetric Σ9 and related symmetrical Σ9 and Σ3 tilt grain boundaries, by means of molecular-statics simulations with empirical silicon potentials in combination with first-principles calculations, results in a faceted asymmetric interface structure, whose grain-boundary energy is so low that it is likely to exist. The simulated local atomic structures match the observed HR-STEM images very well.
000840160 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000840160 588__ $$aDataset connected to CrossRef
000840160 7001_ $$0P:(DE-HGF)0$$aZiebarth, B.$$b1
000840160 7001_ $$0P:(DE-Juel1)130525$$aBarthel, J.$$b2
000840160 7001_ $$0P:(DE-HGF)0$$aCojocaru-Mirédin, O.$$b3
000840160 7001_ $$0P:(DE-HGF)0$$aElsässer, C.$$b4
000840160 7001_ $$0P:(DE-HGF)0$$aRaabe, D.$$b5
000840160 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.115.235502$$gVol. 115, no. 23, p. 235502$$n23$$p235502$$tPhysical review letters$$v115$$x1079-7114$$y2015
000840160 8564_ $$uhttps://juser.fz-juelich.de/record/840160/files/PhysRevLett.115.235502.pdf$$yOpenAccess
000840160 8564_ $$uhttps://juser.fz-juelich.de/record/840160/files/PhysRevLett.115.235502.gif?subformat=icon$$xicon$$yOpenAccess
000840160 8564_ $$uhttps://juser.fz-juelich.de/record/840160/files/PhysRevLett.115.235502.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840160 8564_ $$uhttps://juser.fz-juelich.de/record/840160/files/PhysRevLett.115.235502.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840160 8564_ $$uhttps://juser.fz-juelich.de/record/840160/files/PhysRevLett.115.235502.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840160 8564_ $$uhttps://juser.fz-juelich.de/record/840160/files/PhysRevLett.115.235502.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840160 909CO $$ooai:juser.fz-juelich.de:840160$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000840160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b2$$kFZJ
000840160 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000840160 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840160 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840160 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000840160 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2015
000840160 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2015
000840160 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840160 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840160 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840160 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840160 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840160 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840160 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840160 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840160 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840160 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840160 920__ $$lyes
000840160 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000840160 980__ $$ajournal
000840160 980__ $$aVDB
000840160 980__ $$aUNRESTRICTED
000840160 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000840160 9801_ $$aFullTexts