#))0LICH

FORSCHUNGSZENTRUM

Performance Counters and Tools

OpenPOWER Tutorial, SC17, Denver

Andreas Herten, Forschungszentrum Jiilich, 13 November 2017

Outline

Goals of this session

= Get to know Performance Counters
= Measure counters on POWERS

— Hands-on

= Additional material in appendix

\ssociation

Member of the Helmholtz A:

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

#) JULICH

FORSCHUNGSZENTRUM

Motivation
Performance Counters
Introduction
General Description
Counters on POWERS8
Measuring Counters
perf
PAPI
GPUs
Conclusion

#2|19

[...] premature optimization is the root of all evil.

- Donald Knuth

[...] premature optimization is the root of all evil.
Yet we should not pass up our [optimization] op-
portunities [...]

- Donald Knuth

Full quote in appendix

Optimization) Measurement #) j0LICH

. . . FORSCHUNGSZENTRUM
Making educated decisions

= Only optimize code after measuring its performance
Measure! Don’t trust your gut!

£
:
H
H

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #4]19

Optimization C Measurement #) JULICH

. . . FORSCHUNGSZENTRUM
Making educated decisions

= Only optimize code after measuring its performance
Measure! Don’t trust your gut!
= Objectives
— Runtime
— Cycles
— Operations per cycle (FLOP/s)
— Usage of architecture features (S, (S)MT, SIMD,)

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #4[19

Optimization C Measurement #) JULICH

. . . FORSCHUNGSZENTRUM
Making educated decisions

= Only optimize code after measuring its performance
Measure! Don’t trust your gut!
= Objectives
— Runtime
— Cycles
— Operations per cycle (FLOP/s)
— Usage of architecture features (S, (S)MT, SIMD,)
= Correlate measurements with code

— hot spots/performance limiters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #4[19

iation

Member of the Helmholtz Associ

Optimization) Measurement #) j0LICH

. . . FORSCHUNGSZENTRUM
Making educated decisions

= Only optimize code after measuring its performance
Measure! Don’t trust your gut!
= Objectives
— Runtime
— Cycles
— Operations per cycle (FLOP/s)
— Usage of architecture features (S, (S)MT, SIMD,)
= Correlate measurements with code
— hot spots/performance limiters
= |terative process

_/

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #4]19

Association

Member of the Helmholtz

Measurement

Two options for insight

Coarse Timestamps to time program / parts of program
= Only good for first glimpse
= Noinsight to inner workings
Detailed Performance counters to study usage of hardware architecture

= |nstructions — = Flushs
CPI, IPC
= Cycles— = Branches

= Floating point operations = CPU migrations
= Stalled cycles

= Cache misses, cache hits
= Prefetches

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

#) JULICH

FORSCHUNGSZENTRUM

#5]19

Association

Measurement !) JULICH

FORSCHUNGSZENTRUM

Two options for insight
Coarse Timestamps to time program / parts of program

= Only good for first glimpse
= Noinsight to inner workings

Detailed Performance counters to study usage of hardware architecture

= Instructions — = Flushs
CPI, IPC
= Cycles— = Branches
= Floating point operations = CPU migrations

= Stalled cycles
= Cache misses, cache hits

Member of the Helmholtz

= Native = Prefetches
» Derived
. Software

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #5]19

Member of the Helmholtz Association

#))0LICH

FORSCHUNGSZENTRUM

Performance Counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #6]19

Performance Monitoring Unit 0 JULICH

. FORSCHUNGSZENTRUM
Right next to the core

= Part of processor periphery, but dedicated registers
= History

— First occurrence: Intel Pentium, reverse-engineered 1994 (RDPMC) [1]
— Originally for chip developers

— Later embraced for software developers and tuners

= Operation: Certain events counted at logic level, then aggregated to registers

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #7]19

Performance Monitoring Unit 0 JULICH

. FORSCHUNGSZENTRUM
Right next to the core

= Part of processor periphery, but dedicated registers
= History

— First occurrence: Intel Pentium, reverse-engineered 1994 (RDPMC) [1]
— Originally for chip developers
— Later embraced for software developers and tuners

= Operation: Certain events counted at logic level, then aggregated to registers

Pros Cons
= Low overhead = Processor-specific
= Very specific requests possible; detailed = Hard to measure
information = Limited amount of counter registers
= Information about CPU core, nest, cache, = Compressed information content
memory

2
£

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #7]19

Association

Member of the Helmholtz

Working with Performance Counters 0 JULICH

FORSCHUNGSZENTRUM
Some caveats

= Mind the clock rates!
— Modern processors have dynamic clock rates (CPUs, GPUs)
— Might skew results
— Some counters might not run at nominal clock rate
= Limited counter registers
POWERS: 6 slots for hardware counters
= Cores, Threads (OpenMP)

— Absolutely possible
— Complicates things slightly
— Pinning necessary
— OMP_PROC_BIND, OMP_PLACES; PAPI_thread_init()

= Nodes (MPI): Counters independent of MPI, but aggregation tool useful (Score-P, ...)

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #8]19

RRRRRRRRRRRRRRRRRR

Performance Counters on POWERS

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #9]19

POWERS Compartments !) JULICH

FORSCHUNGSZENTRUM
Sources of PMU events

POWERS

£
:
H
H

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1019

POWER8 Compartments !) JULICH

FORSCHUNGSZENTRUM
Sources of PMU events

POWERS

T

Nest-Level

Association

Member of the Helmholtz

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1019

POWERS Compartments 0 JULICH

FORSCHUNGSZENTRUM
Sources of PMU events

POWERS

T

Nest-Level

= Core/thread level

= Core pipeline analysis
— Frontend
— Branch prediction
— Execution units

= Behavior investigation
— Stalls
— Utilization

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #10(19

POWERS Compartments O JULICH

FORSCHUNGSZENTRUM
Sources of PMU events

POWERS

T

Nest-Level

= Core/thread level = L3 cache, interconnect fabric,
= Core pipeline analysis memory channels

— Frontend = Analysis of

— Branch prediction

. . — Main memory access
— Execution units — Bandwidth

= Behavior investigation
— Stalls
— Utilization

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #10(19

POWERS Performance Counters !) JULICH

. FORSCHUNGSZENTRUM
Instructions, Stalls

PM_LD_MISS_L1 Load missed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1119

POWERS Performance Counters !) JULICH

FORSCHUNGSZENTRUM

Instructions, Stalls

PM_LD_MISS_L1 Load missed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run

Processor cycles gated by the run latch

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1119

POWERS Performance Counters !) JULICH

. FORSCHUNGSZENTRUM
Instructions, Stalls

PM_LD_MISS_L1 Load missed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL
PM_RUN_CYC Total cycles run

Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall

Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict

After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty

Global Completion Table has no slots from thread

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1119

POWERS Performance Counters O JULICH

. FORSCHUNGSZENTRUM
Instructions, Stalls

PM_LD_MISS_L1 Load missed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL
PM_RUN_CYC Total cycles run

Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall

Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict

After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty

Global Completion Table has no slots from thread

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1119

POWERS Performance Counters O JULICH

. FORSCHUNGSZENTRUM
Instructions, Stalls

PM_LD_MISS_L1 Load missed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL
PM_RUN_CYC Total cycles run

Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall

Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict

After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty

Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_VsSU Stall due toVSU
VSU: Vector Scalar Unit

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1119

POWERS Performance Counters O JULICH

. FORSCHUNGSZENTRUM
Instructions, Stalls

PM_LD_MISS_L1 Load missed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL
PM_RUN_CYC Total cycles run

Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall

Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict

After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty

Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_VsSU Stall due toVSU
VSU: Vector Scalar Unit

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1119

POWERS Performance Counters O JULICH

. FORSCHUNGSZENTRUM
Instructions, Stalls

PM_LD_MISS_L1 Load missed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL
PM_RUN_CYC Total cycles run

Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall

Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict

After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty

Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VsSU Stall due toVSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction

Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1119

POWERS Performance Counters O JULICH

. FORSCHUNGSZENTRUM
Instructions, Stalls

PM_LD_MISS_L1 Load missed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed

Also: PM_RUN_INST_CMPL
PM_RUN_CYC Total cycles run

Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall

Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict

After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty

Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall dueto IFU
IFU: Instruction Fetching Unit

\PM CMPLU_STALL_BRU Stall due to BRU !
BRU: Branch Unit |

PM_CMPLU_STALL_VsU Stall due toVSU
VSU: Vector Scalar Unit

wPM CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction

Float/ng point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1119

POWERS Performance Counters O JULICH

. FORSCHUNGSZENTRUM
Instructions, Stalls

PM_LD_MISS_L1 Load missed L1 cache =
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4 {‘L =
PM_INST_CMPL Instructions completed B

Also: PM_RUN_INST_CMPL
PM_RUN_CYC Total cycles run

Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall

Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict

After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty

Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall dueto IFU
IFU: Instruction Fetching Unit

\PM CMPLU_STALL_BRU Stall due to BRU !
BRU: Branch Unit |

PM_CMPLU_STALL_VsU Stall due toVSU
VSU: Vector Scalar Unit

wPM CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction

Float/ng point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1119

Number of counters for POWERS:
~1063

See appendix for more on counters

(CPI stack; resources)

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1119

Member of the Helmholtz Association

Measuring Counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

)

JULICH

FORSCHUNGSZENTRUM

#1219

Overview #) JULICH

FORSCHUNGSZENTRUM

perf Linux’ tool (also called perf_events)
PAPI C/C++API
Score-P Measurement environment (appendix)
Likwid Set of command line utilities for detailed analysis
perf_event_open() Linuxsystem call from linux/perf_event.h
... Many more solutions, usually relying on perf

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1319

£
2
€

perf

Linux’ own performance tool

= Part of Linux kernel since 2009 (v. 2.6.31)

= Example usage: perf stat ./app

$ perf stat ./poisson2d

Performance counter stats for './poisson2d':

65703.208586
355

0

10,847
228,425,964,399
299,409,593
147,289,312,280
323,403,983,324

12,665,027,391
4,256,513

task-clock (msec)
context-switches
cpu-migrations
page-faults

cycles
stalled-cycles-frontend
stalled-cycles-backend
instructions

branches
branch-misses

65.715156815 seconds time elapsed

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

.000 CPUs utilized
.005 K/sec
.000 K/sec
.165 K/sec
477 GHz
.13% frontend cycles idle
64.48% backend cycles idle
1.42 insn per cycle
0.46 stalled cycles per insn
192.761 M/sec
0.03% of all branches

JULICH

FORSCHUNGSZENTRUM

#14]19

perf O JULICH
Linux’ own performance tool ForsereszTO
= Part of Linux kernel since 2009 (v. 2.6.31)
= Usage: perf stat ./app

= Raw counter example: perf stat -e r600f4 ./app
o0 e

$ perf stat -e r600f4 ./poisson2d

Performance counter stats for './poisson2d':
228,457,525,677 r600f4

65.761947405 seconds time elapsed

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #14|19

perf 0]0LICH

. 5 FORSCHUNGSZENTRUM
Linux’ own performance tool

= Part of Linux kernel since 2009 (v. 2.6.31)

= Usage: perf stat ./app

= Raw counter example: perf stat -e r600f4 ./app
= More in appendix

£
£
5
g

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #14|19

PAPI A) JOLICH

FORSCHUNGSZENTRUM

Measure where it hurts...

= Performance Application Programming Interface
= API for C/C++, Fortran

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1519

PAPI A) JOLICH

Measure where it hurts... s
= Performance Application Programming Interface
= API for C/C++, Fortran

= Goal: Create common (and easy) interface to performance counters
= Two APl layers (Examples in appendix!)

— High-Level API: Most-commonly needed information capsuled by convenient functions
— Low-Level API: Access all the counters!

E
2
£

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1519

PAPI A) JOLICH

Measure where it hurts... s
= Performance Application Programming Interface
= API for C/C++, Fortran

= Goal: Create common (and easy) interface to performance counters
= Two APl layers (Examples in appendix!)

— High-Level API: Most-commonly needed information capsuled by convenient functions
— Low-Level API: Access all the counters!

= Command line utilities

papi_avail Listaliased, common counters
Use papi_avail -e EVENT to get description and options for EVENT
papi_native_avail Listall possible counters, with details

= Extendable by Component PAPI (GPU!)

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1519

PAPI A) JOLICH

Measure where it hurts... s
= Performance Application Programming Interface
= API for C/C++, Fortran

= Goal: Create common (and easy) interface to performance counters
= Two APl layers (Examples in appendix!)

— High-Level API: Most-commonly needed information capsuled by convenient functions
— Low-Level API: Access all the counters!
= Command line utilities
papi_avail Listaliased, common counters
Use papi_avail -e EVENT to get description and options for EVENT
papi_native_avail Listall possible counters, with details

= Extendable by Component PAPI (GPU!)
= Comparison to perf: Instrument specific parts of code, with different counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1519

PAPI

papi_avail

$ papi_avail
Available PAPI preset and user defined events plus hardware information.

PAPI Version

Vendor string and code : IBM (3)
Model string and code : 8335-GCA (0)
CPU Revision : 2.000000
CPU Max Megahertz : 3491

CPU Min Megahertz : 2061

Hdw Threads per core : 8

Cores per Socket

Sockets

NUMA Nodes

CPUs per Node

Total CPUs

Running in a VM

Number Hardware Counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #16(19

PAPI

papi_avail

Code Avail Deriv Description (Note)

PAPI_L1 DCM 0x80000000 Yes Yes Level data cache misses
PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses
PAPI_L2 _DCM 0x80000002 Yes No Level data cache misses
PAPI_L2_ICM 0x80000003 No No Level instruction cache misses
PAPI_L3_DCM 0x80000004 No No Level data cache misses
PAPI_L3_ICM 0x80000005 Yes No Level instruction cache misses
PAPI_L1_TCM 0x80000006 No No Level cache misses

PAPI_L2_TCM 0x80000007 No No Level cache misses

PAPI_L3_TCM 0x80000008 No No Level cache misses

PAPI_CA_SNP 0x80000009 No No Requests for a snoop

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #16(19

PAPI

papi_avail

$ papi_avail -e PM_DATA_FROM_L3MISS
Available PAPI preset and user defined events plus hardware information.

Event name: PM_DATA_FROM_L3MISS
Event Code: 0x40000011

Number of Register Values: 0

Description: |Demand LD - L3 Miss (not L2 hit and not L3 hit).

Unit Masks:

Mask Info: :u=0|monitor at user level|

Mask Info: :k=0|monitor at kernel level]
Mask Info: :h=0|monitor at hypervisor level]
Mask Info: :period=0|sampling period]|

Mask Info: :freq=0|sampling frequency (Hz)|
Mask Info: :excl=0]exclusive access|

Mask Info: :mg=0|monitor guest execution]|

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #16(19

E
2
£

PAPI A) JOLICH

. FORSCHUNGSZENTRUM
Notes on usage; Tipps

= Important functions in High Level API

PAPI_num_counters() # available counter registers
PAPI_flops() Get real time, processor time, # floating point operations, and MFLOPs/s
PAPI_ipc() #instructionsand IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #17|19

PAPI A) JOLICH

Notes on usage; Tipps forseesRTE
= Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Get real time, processor time, # floating point operations, and MFLOPs/s
PAPI_ipc() #instructionsand IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)
= Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any event to event set
PAPI_thread_init() Initialize thread support in PAPI
= Documentation online and in man pages (man papi_add_event)

E
2
£

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #17|19

E
2
£

PAPI A) JOLICH

FORSCHUNGSZENTRUM

Notes on usage; Tipps

Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Get real time, processor time, # floating point operations, and MFLOPs/s

PAPI_ipc() #instructionsand IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)

Important functions in Low Level API

PAPI_add_event() Add aliased event to event set

PAPI_add_named_event() Add any event to event set

PAPI_thread_init() Initialize thread support in PAPI

Documentation online and in man pages (man papi_add_event)

All PAPI calls return status code; check for it! (Macros in appendix: C++, C)

Convert names of performance counters with 1ibpfms (appendix)

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #17|19

E
2
£

PAPI A) JOLICH

FORSCHUNGSZENTRUM

Notes on usage; Tipps

Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Get real time, processor time, # floating point operations, and MFLOPs/s

PAPI_ipc() #instructionsand IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)

Important functions in Low Level API

PAPI_add_event() Add aliased event to event set

PAPI_add_named_event() Add any event to event set

PAPI_thread_init() Initialize thread support in PAPI

Documentation online and in man pages (man papi_add_event)

All PAPI calls return status code; check for it! (Macros in appendix: C++, C)

Convert names of performance counters with 1ibpfms (appendix)

— http://icl.cs.utk.edu/papi/

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #17|19

GPU Counters
Aglimpse ahead

Counters built right in
Grouped into domains by topic
NVIDIA differentiates between (more examples in appendix)

Event Countable activity or occurrence on GPU device
Examples: shared_store, generic_load, shared_atom
Metric Characteristic calculated from one or more events
Examples: executed_ipc, flop_count_dp_fma, achieved_occupancy

Usually: access via nvprof / Visual Profiler; but exposed via CUPTI for 3rd party

— Afternoon session / appendix

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

#) JULICH

FORSCHUNGSZENTRUM

#18]19

Conclusions #) JULICH

FORSCHUNGSZENTRUM

What we’ve learned

= Large set of performance counters on POWERS processors
= Right next to (inside) core(s)
= Provide detailed insight for performance analysis on many levels

= Different measurement strategies and tools

— perf
— PAPI
— Score-P

= Alsoon GPU

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #19(19

ssociation

Member of the Helmholtz A:

Conclusions #) JULICH

FORSCHUNGSZENTRUM

What we’ve learned

= Large set of performance counters on POWERS processors
= Right next to (inside) core(s)
= Provide detailed insight for performance analysis on many levels

= Different measurement strategies and tools

— perf
— PAPI
— Score-P

= AlsoonGPU

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #19(19

Member of the Helmholtz Association

Appendix
Knuth on Optimization
POWERS Performance Counters
perf
PAPI Supplementary
Score-P
GPU Counters
Glossary
References

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

)

JULICH

FORSCHUNGSZENTRUM

#1]34

Member of the Helmholtz Association

Appendix

Knuth on Optimization

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

)

JULICH

FORSCHUNGSZENTRUM

#2]34

Association

Member of the Helmholtz

Knuth on Optimization 0 JULICH

The full quote, finally

There is no doubt that the grail of efficiency leads to abuse. Programmers waste
enormous amounts of time thinking about, or worrying about, the speed of noncrit-
ical parts of their programs, and these attempts at efficiency actually have a strong
negative impact when debugging and maintenance are considered. We should forget
about small efficiencies, say about 97 % of the time: pre mature optimization is the
root of all evil.

Yet we should not pass up our opportunities in that critical 3 %. A good program-
mer will not be lulled into complacency by such reasoning, he will be wise to look care-
fully at the critical code; but only after that code has been identified

- Donald Knuth in “Structured Programming with Go to Statements” [2]

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

FORSCHUNGSZENTRUM

#3]34

Member of the Helmholtz Association

Appendix

POWERS Performance Counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

)

JULICH

FORSCHUNGSZENTRUM

#4]34

POWERS Performance Counters O JULICH

FORSCHUNGSZENTRUM

= Further information on counters at IBM website
— JSON overview of OpenPOWER PMU events on Github
— CPlevents and metrics for POWERS8
— Events and groups supported on POWERS8 architecture
— Derived metrics defined for POWERS architecture
— Table 11-18 and Table D-1 of POWERS8 Processor User’s Manual for the Single-Chip Module
— OProfile: ppc64 POWERS events
= List available counters on system
— With PAPI: papi_native_avail
— With showevtinfo from libpfm’s /examples/ directory

./showevtinfo | \
grep -e "Name" -e "Desc" | sed "s/".\+: //g" | paste -d'\t' - -

= See next slide for CPI stack visualization
= Most important counters for OpenMP: DMISS_PM_CMPLU_STALL_DMISS_L3MISS,
PM_CMPLU_STALL_DMISS_REMOTE, PM_CMPLU_STALL_DMISS_DISTANT

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #5[34

LwsvNe
PH_CHPLU_STALL_LYSYNC
Glossary.

BRU. Branching Unit

HISYNG
PU_CHPLU_STALL_HUSYNC
R Conditional Register

ECC Delay XU Fixed-point Unit

PH_CHPLU_STALL_NEW_ECC_DELAY)
Other Thread's Flush 15U, Load:Store Unit

PH_CHPLU_STALL_FLUSH LMQ Load Miss Queue

ERAT Effectve to Real Address
Translation

oQ Full
PH_CHPLU_STALL_COQ_FULL
LWSYNC Lightuelght Synchro-

nize

- Other

- - [e [T T———
; BRorCR ! | Pu_oupLu_STALL 5R0 | e
| PHLOHPLU_STALL BR_cR | T Ecc. Emor Comecting Code

Group Waiting
— toComplete

CE AL P T Fedramt | o AL
pn_cupLy_sTLL Pru T - Stalldue to.

Derived Quantity

| Thread blocked due to

Nothing to dispatch due to.

H vsu i ' Scalar 1 PN_OWPLY.
T PH_CHPLUST ALL_VSU | PH_CHPLU_STALL_SCALAR |

L——{other|

Stalled Gyl [Nextto completerlush | [store Finish
PA_CHPLU_STALL }7 | PLOHPLY.STALLNTCO.FLUSH | gy) sTaLs, sToRe

T Load Hitstore
U_STALL_REJECT_LHS

! NOPs |
[Pu_cupLu_STALL o_wTF |

- I eV |
| Lsu | with Conflict i

| StoreForward |
[Pu_cupLu_sTALL ST_Au0

~ Lf3Hit |
L Other : | w/No Conflict |
T PH_CHPLY_STALL OTHER_CHPL | §

On-Chip L2/13
| PM_OMPLU_STALL_DMISS_L21_L31

Run Instruction e 5
PYRUN_TNST_CHPL I onchipMemory |
| PA_CNPLU_STALL_OMISS_LMEM |

| oftchipemory |
| PA_CHPL_STALL_uTSS_ReENDTE |

L3Miss
PH_GCT_NOSLOT_IC_L3MISS
Cache Miss 1eeT NosLoT I

PH_GCT_NOSLOT_IC_NISS

Other

Branch Mispredict

OffNode Memory |
PU_GcT._NosLoT. 88 nPRe !]

Dispatch Held: Mapper

Branch Wispredict PH_GCT_NOSLOT_DISP_HELD_WaP
PU_GCT_HOSLOT_B%_NPRED_TONTSS | ispatch Held: Store Queus

PYLGCT_NOSLOT_DISP_HELD_SRQ
Dispatch Held

Dispatch Held: ssue Queue
P_GCT_NOSLOT_DISP_HELD_1550

Other iy
OTHER_CPT Dispatch Held: Other
PH_GCT_NOSLOT_DISP_HELD_OTHER

#))0LICH

FORSCHUNGSZENTRUM

Appendix

perf

2
£
:
§
£

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #7]34

£

perf OJI'JLICH

FORSCHUNGSZENTRUM
Sub-commands

= Sub-commands for perf

perf list Listavailable counters

perf stat Run program,; report performance data
perf record Run program;sample and save performance data
perf report Analyzed saved performance data (appendix)

perf top Like top, live-view of counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #8[34

perf OJULICH

. . FORSCHUNGSZENTRUM
Tipps, Tricks

= Option --repeat for statistical measurements

1.239 seconds time elapsed (+- 0.16%)

= Restrict counters to certain user-level modes by -e counter:m, with m=u (user), =k
(kernel), = h (hypervisor)

= perf modes: Per-thread (default), per-process (-p PID), per-CPU (-a)

= Otheroptions

-d More details -B Add thousands’ delimiters
-d -d More more details -x Print machine-readable output
= Moreinfo

— web.eece.maine.edu/~vweaver/projects/perf_events/
— Brendan Gregg’s examples on perf usage

— https://perf.wiki.kernel.org/

E
2
£

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #9]34

Deeper Analysis with perf

perf record

JULICH

FORSCHUNGSZENTRUM

Usage: perf record ./app

$ perf record ./poisson2d

[perf record: Woken up 41 times to write data]

[nf_conntrack_ipv4] with build id ada66fe®@acc82eac85be0969a935e3167b09c88 not found, continuing without symbols
[nf_conntrack] with build id 2911e97a3bde3302788e8388d1e3c19408ad86cf not found, continuing without symbols
[ebtables] with build id b@aa834b86d596edeb5a72dlebf3936a98b17bcf not found, continuing without symbols
[ip_tables] with build id 23fe@4e7292b66a2ccl04e8c5b026b4sb3a911cac not found, continuing without symbols

[bridge] with build id b7a0fcdbca63084c22e04fcf32e0584d04193954 not found, continuing without symbols
[perf record: Captured and wrote 10.076 MB perf.data (263882 samples)]

$ 11 perf.data
1 aherten zam 10570296 Aug 26 19:24 perf.data

£
2
€

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #10(34

Deeper Analysis with perf #) j0LICH

ENTRUM

perf report: Overview

Samples: 263K of event 'cycles:ppp', Event count (approx.): 228605603717, Thread: poisson2d
Overhead Command Shared Object Symbol
93.00% poisson2d poisson2d [.] main

4.70% poisson2d libm-2.17.so [.1 __fmaxf

1.84% poisson2d poisson2d [.] 00000017.plt_call.fmaxa@GLIBC_2.17
0.21% poisson2d libm-2.17.so [.]1 __exp_finite

0.01% poisson2d [kernel.kallsyms] [k hrtimer_interrupt

0.01% poisson2d [kernel.kallsyms] [k] update_wall_time

0.01% poisson2d libm-2.17.so [.1 _6I___exp

0.01% poisson2d [kernel.kallsyms] [k task_tick_fair

0.01% poisson2d [kernel.kallsyms] [k rcu_check_callbacks

0.01% poisson2d [kernel.kallsyms] [k] __hrtimer_run_queues

0.01% poisson2d [kernel.kallsyms] [k] __do_softirq

0.01% poisson2d [kernel.kallsyms] [k] _raw_spin_lock

0.01% poisson2d [kernel.kallsyms] [k] timer_interrupt

0.01% poisson2d [kernel.kallsyms] [k] update_process_times

0.01% poisson2d [kernel.kallsyms] [k] tick_sched_timer

0.01% poisson2d [kernel.kallsyns] [k] rcu_process_callbacks

0.01% poisson2d poisson2d [.] 00000017.plt_call.expaaGLIBC_2.17
0.01% poisson2d [kernel.kallsyns] [k] ktime_get_update_offsets_now
0.01% poisson2d [kernel.kallsyms] [k] account_process_tick

0.01% poisson2d [kernel.kallsyns] [k] run_posix_cpu_timers

0.00% poisson2d [kernel.kallsyms] [k] trigger_load_balance

0.00% poisson2d [kernel.kallsyms] [K] scheduler_tick

0.00% poisson2d [kernel.kallsyms] [k] clear_user_page

0.00% poisson2d [kernel.kallsyms] [k] update_cfs_shares

0.00% poisson2d [kernel.kallsyms] [k] tick_do_update_jiffies6s

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #10(34

Deeper Analysis with perf
perf report: Zoomtomain()
o0 e

NTRUM

main /gpfs/homeb/zam/aherten/NVAL/OtherProgranming/OpenPONER-SC17/PAPT-Test/poisson2d

0.0 | lwz r9,100(r31)
mullw r9,r10,r9
extsw 19,19
1wz r10,140(r31)
add r9,r1e,r9
extsw 19,19
rldicr 19,19,3,60
1d r10,184(r31)
add 19,r10,r9
1fd f12,6(r9)
wz r10,136(r31)
iz r9,100(r31)
mulle r9,r10,r9

extsw r9,r9

add r9,r1e,r9

extsw 19,19
ridicr r9,r9,3,60

r10,168(r31)

19,r10,19

f0,0(r9)

fo,f12,fo

fo,fo

2,f0

£1,128(r31)

10000780 <00000017.plt_call.fmaxa@GLIBC_2.17>
1.03 2,24(r1)
Press 'h' for help on key bindings

|
|
|
|
|
|
|
|
|
|
|
|
|
| wz r10,140(r31)
|
|
|
|
|
|
|
|
|
|
|
|

Andreas Herten

Member of the Helmholtz Association

Appendix

PAPI Supplementary

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

)

JULICH

FORSCHUNGSZENTRUM

#1134

PAPI: High Level AP #) JULICH

FORSCHUNGSZENTRUM
Usage: Source Code

// Setup
float realTime, procTime, mflops, ipc;
long long flpins, ins;

// Initial call
PAPI_flops(&realTime, &procTime, &flpins, &mflops);
PAPI_ipc(&realTime, &procTime, &ins, &ipc);

// Compute
mult(m, n, p, A, B, C);

// Finalize call
PAPI_flops(&realTime, &procTime, &flpins, &mflops);
PAPI_ipc(&realTime, &procTime, &ins, &ipc);

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1234

Member of the Helmholtz Association

PAPI: Low Level API

Usage: Source Code

int EventSet = PAPI_NULL;
long long values[2];

// PAPI: Setup

PAPI_library_init(PAPI_VER_CURRENT);
PAPI_create_eventset(&EventSet);

// PAPI: Test availability of counters
PAPI_query_named_event("PM_CMPLU_STALL_VSU");
PAPI_query_named_event("PM_CMPLU_STALL_SCALAR");

// PAPI: Add counters
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_VSU");
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_SCALAR");
// PAPI: Start collection

PAPI_start(EventSet);

// Compute

do_something();

// PAPI: End collection

PAPI_CALL(PAPI_stop(EventSet, values) , PAPI_OK) ;

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

)

JULICH

FORSCHUNGSZENTRUM

#1334

E
£
:
§
2

PAPI: Low Level API #))0LICH

FORSCHUNGSZENTRUM
Usage: Source Code

int EventSet = PAPI_NULL;
long long values[2];

// PAPI: Setup
PAPI_library_init(PAPI_VER_CURRENT);

PAPI_create_eventset(&EventSet);

// PAPI: Test availability of counters
PAPI_query_named_event("PM_CMPLU_STALL_VSU");
PAPI_query_named_event("PM_CMPLU_STALL_SCALAR");

// PAPI: Add counters

PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_VSU"); Pre-processor macro
PAPT_add_named_event(EventSet, "PM_CMPLU_STALL_SCALAR" o, checking results!
// PAPI: Start collection S2e e SRl
PAPI_start(EventSet); :
// Compute
do_somethin 3
// PAPI7 End collection

PAPI_CALL(PAPI_stop(EventSet, values) , PAPI_OK) ;

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1334

£
:
H
H

PAPI Error Macro: C++

For easier status code checking

#include "papi.h"
#define PAPI_CALL(call, success)

#))0LICH

FORSCHUNGSZENTRUM

" in L" << __LINE__ << " of " <K

\
{ \
int err = call; \
if (success != err) \
std::cerr << "PAPI error for " << #call <<
— __FILE _ << ": " << PAPI_strerror(err) << std::endl; \
}

// Second argument 1is code for GOOD,

// e.g. PAPI_OK or PAPI_VER_CURRENT or ..
/)

// Call like:

PAPI_CALL(PAPI_start(EventSet), PAPI_OK);

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

#14(34

PAPI Error Macro: C O JULICH

. . FORSCHUNGSZENTRUM
For easier status code checking

#include "papi.h"

#define PAPI_CALL(call, success) \
{ \
int err = call; \

if (success != err) \
fprintf(stderr, "PAPI error for %s in L%d of %s:
— __FILE _, PAPI_strerror(err)); |\

}

// Second argument 1is code for GOOD,

// e.g. PAPI_OK or PAPI_VER_CURRENT or ..

/)

// Call like:

PAPI_CALL(PAPI_start(EventSet), PAPI_OK);

%s\n", #call, __LINE__,

£
:
H
H

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1534

libpfmé #) JULICH

FORSCHUNGSZENTRUM

A helper Library

= Helper library for setting up counters interfacing with perf kernel environment
= Used by PAPI to resolve counters
= Handy as translation: Named counters — raw counters

= Use command line utility perf_examples/evt2raw to get raw counter for perf
[] []

$./evt2raw PM_CMPLU_STALL_VSU

r2de12

— http://perfmon2.sourceforge.net/docs_v4.html

£
2
E

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #16(34

#))0LICH

FORSCHUNGSZENTRUM

Appendix

Score-P

£
:
H
H

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #17|34

Score-P #))0LICH

. FORSCHUNGSZENTRUM
Introduction

= Measurement infrastructure for profiling, event tracing, online analysis
= OQOutput format input for many analysis tools (Cube, Vampir, Periscope, Scalasca, Tau)

| oo § como § oooo J oo J oo cm)
ST T 1

OOOmo(0 000)

(00000, o) I
O O 0000 OOCm oo

(=

OO0
Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1834

Score-P #) JULICH

FORSCHUNGSZENTRUM
Howto

= Prefix compiler executable by scorep
[BN

$ scorep clang++ -o app code.cpp

— Adds instrumentation calls to binary
= Profiling output is stored to file after run of binary

= Steer with environment variables at run time
[] []

$ export SCOREP_METRIC_PAPI=PAPI_FP_OPS,PM_CMPLU_STALL_VSU

$./app

= Use different PAPI counters per run!

= Quick visualization with Cube; scoring with scorep-score

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #1934

Score-P

Principle analysis with scorep-score

Usage: scorep-score -r FILE

o herten — aherten@jupp00: ~/NVAL/Other/OpenPOWER-SC16/test — ssh « ssh juppext
aherten@jupp00:~/NVAL/Other/OpenPOWER-SC16/test$ scorep-score -r —c 2 scorep-20160826_2106_1032520

6034857807 /profile.cubex

Estimated aggregate size of event trace: 149 bytes

Estimated requirements for largest trace buffer (max_buf): 149 bytes

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 4097kB

(hint: When tracing set SCOREP_TOTAL_MEMORY=4097kB to avoid intermediate flushes

or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us]
ALL 148 2 1.92 100.0 961066.48
USR 148 1.92 100.0 961066.48

USR 74 1.89 98.4 1891933.34
USR 74 1 0.03 1.6 30199.62
aherten@jupp00:~/NVAL/Other/OpenPOWER-SC16/test$

region
ALL
USR

_Z4multiiiPKfse_Pf
main

#2034

Score-P

Performance counter analysis with cube_dump

Usage: cube-dump -m METRIC FILE

herten — aherten@jupp00: ~/NVAL/Other/OpenPOWER-SC16/test — ssh jupp

aherten@jupp@0:~/NVAL/Other/OpenPOWER-SC16/test$ cube_dump -m PAPI_FP_OPS scorep-20160830_1138_106367049
09174321/profile.cubex

DATA
Print out the data of the metric PAPI_FP_OPS

Master thread

main(id=0) 721459
_Z4multiiiPKfS@_Pf(id=1) 432004097
aherten@jupp00:~/NVAL/Other/OpenPOWER-SC16/test$

#2034

tember of the

Andreas Herten | OpenPOWER

Score-P
Analysis with Cubg

eoce

Restore Setting y _Save Settings

[Wetric ree |

Absolute

Absolute

N

Cube-4.3.4: 64458F3A-CC85-4A88-A4CA-0B1C54BBFO4E/cpi_der_full.cubex

Absolute

[Fiat view [soxpiot

v 0 0.00 Cycles (#)
v [0 0.00 Completion Stalls
» I 0.00 Stall due to BR or CR
» [7.67¢10 Stall due to BR or CR
» [1.02e71 Stall due to Fixed-Point
» [8.38¢10 Stall due to Vector/Scalar
v O 0.00 Stall due to Load/Store
v [6.38e8 Stall due to Dcache Miss
v 0 0.00 Stall due to L2/L3 Hit
3.15e8 L2/L3 hit with conflict
1.57€10 L2/L3 hit with no conflict
v O 0.00 Stall due to L3 Miss
3.15€7 Stall due to On-chip L2/L3
5.48e8 Stall due to On-chip Memory
6.64¢6 Stall due to Off-chip L2/L3/Mem
5.84e7 Stall due to Off-node Memory
v O 0.00 Stall due to LSU Reject
5.29e7 Reject due to Load-Hit
5.79e8 Reject due to ERAT Miss
7.09e8 Reject due to LMQ Full
1.11e9 Reject due to Reject (other)
[T 2.30e11 Stall due to Store Finish
[T 1.35e11 Stall due to Load Finish
5.65210 Stall due to Store Forward
122610 Stall due to Load|Store (other)
3.96e7 Stall due to Next-to-Complete Flush
8.45¢9 Stall due to other reasons
[1.96e11 Waiting to Complete
» [3.20€10 Thread Blocked
» [1.11e11 Completion Table Empty
0 3.65e11 Completion Cycles

vE
vE
>

)
9.27e5 MAIN_ v

IEEEEEEE v vy yEEEEEE

main v O - machine Linux

- node jupp00

v O - MPI Rank 0
7.818 Master thread
1.29e8 OMP thread 1
2.89¢8 OMP thread 2

1.07€7 mpi_setup_
1.29e4 MPI_Bcast
2.40e4 env_setup_
56.00 zone_setup_
1.62e4 map_zones_ X
567.00 zone_starts_ » [12269 MPI Rank 1
432.00 set_constants_ » [1.31e9 MPI Rank 2
7.16€7 initialize_ » [1209 MPI Rank 3
1.96e7 exact_rhs_

3778.00 timer_clear_

9.16e7 exch_abc_

4.11e6 adi_

3.15€8 compute_rhs._

[5.09€9 x_solve_

[5.86e9y_solve_

[4.15e9 z_solve_

24067 add_

6377.00 MPI_Barrier

4772.00 timer_start_

1799.00 timer_stop_

251.00 timer_read.

1.99€7 verify.

3810.00 MPI_Reduce

2.40e4 print_results_

8220.00 MPI_Finalize

All (16 elements)

1.57e10 (1.10%)

1.435|2‘ ‘n.ou

5.00e9 (32.51%)

1 57510‘ ‘0.00

[selected "x_solve_*

JULICH

FORSCHUNGSZENTRUM

#21]34

#))0LICH

FORSCHUNGSZENTRUM

Appendix

GPU Counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #2234

GPU Example Events & Metrics O JULICH

NAME
gld_inst_8bit

threads_launched

inst_executed
shared_store

executed_ipc

FORSCHUNGSZENTRUM

NVIDIA Description (quoted)

Total number of 8-bit global load instructions that are executed by all the threads across
all thread blocks.

Number of threads launched on a multiprocessor.

Number of instructions executed, do not include replays.

Number of executed store instructions where state space is specified as shared,
increments per warp on a multiprocessor.

Instructions executed per cycle

achieved_occupancy Ratio of the average active warps per active cycle to the maximum number of warps

supported on a multiprocessor

11_cache_local_hit_rate Hitratein L1 cache forlocal loads and stores

gld_efficiency

flop_count_dp

stall_pipe_busy

Ratio of requested global memory load throughput to required global memory load
throughput.

Number of double-precision floating-point operations executed non-predicated threads
(add, multiply, multiply-accumulate and special)

Percentage of stalls occurring because a compute operation cannot be performed
because the compute pipeline is busy

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #2334

Association

Member of the Helmholtz

Measuring GPU counters #) JULICH

FORSCHUNGSZENTRUM
Tools

CUPTI C/C++-API through cupti.h
= Activity API: Trace CPU/GPU activity
= Callback API: Hooks for own functions
= Event/ Metric API: Read counters and metrics
— Targets developers of profiling tools
PAPI All PAPI instrumentation through PAPI-C, e.g.
cuda:::device:0:threads_launched
Score-P Mature CUDA support
= Prefix nvcc compilation with scorep

= Set environment variable SCOREP_CUDA_ENABLE=yes
= Run, analyze

nvprof, Visual Profiler NVIDIA’s solutions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #2434

nvprof
GPU command-line measurements

herten — aherten@JUHYDR;

ixMulCUDA<int=32>(floatx, floatx, float¥, int, int)" (@ of 3 Replaying kernel "void matrixMulCUDA<int=32>(float*, float*, flo

atx, int, int)" (@ of 3)==18158== Replaying kernel "void matrixMulCUDA<int=32>(float*, float*, float*, int, int)" (done)

==18158== Replaying kernel "void matrixMulCUDA<int=32>(floatx, floatk, floatx, int, int)" (@ of 3)==18158== Replaying kernel "void matr
ixMulCUDA<int=32>(float*, float*, floatx, int, int)" (0 of 3 18158: Replaying kernel "void matrixMulCUDA<int=32>(float*, floatk, flo

atk, int, int)" (@ of 3)==18158== Replaying kernel "void matrixMulCUDA<int=32>(float*, float¥, floatx, int, int)" (done)
Performance= 1.69 GFlop/s, Time= 77.513 msec, Siz 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
1815 Profiling application: ./matrixMul
18158== Profiling result:
==18158== Event result:
Invocations Event Name Min Max Avg
Device "Tesla K4om (0)"
Kernel: void matrixMulCUDA<int=32>(float*, floatx, float*, int, int)
301 threads_launched 204800 204800 204800

==18158== Metric result:

Invocations Metric Name Metric Description

Device "Tesla K4om (0)"
Kernel: void matrixMulCUDA<int=32>(floatk, floatx, floatk, int, int)
301 flop_count_sp Floating Point Operations(Single Precisi 131072000 131072000
301 ipc Executed IPC 1.472345 1.486837
301 achieved_occupancy Achieved Occupancy 0.960357 0.989658

aherten @ JUHYDRA in ~/cudaSamples/NVIDIA_CUDA-7.5_Samples/bin/x86_64/linux/release [21:47:45]
$ nvprof —-events threads_launched ——metrics flop_count_sp,ipc,achieved_occupancy ./matrixMul

Avg

131072000
1.480249
0.975385

#25(34

nvprof
Useful hints

#) JULICH

FORSCHUNGSZENTRUM

Useful parameters to nvprof

--query-metrics
--query-events
--kernels name
--print-gpu-trace
--aggregate-mode off
--Ccsv

--export-profile

List all metrics

List all events

Limit scope to kernel

Print timeline of invocations

No aggregation over all multiprocessors (average)
Outputa CSV

Store profiling information, e.g. for Visual Profiler

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #2634

Visual Profller JULICH

FORSCHUNGSZENTRUM

NVIDIA Visual Profiler
el

§ *NewSession1 X

=| Process "matrixMul" (18924)
= Thread 39720768
Hirtime AP|
Driver API
Profiling Overhead]
=1 [0] Tesla K40m
=l Context 1 (CUDA)
7 MemCpy (HtoD)
T MemCpy (DtoH)
= Compute
7 100,0% void mat...
= Streams

[l Analysis [Details & Console 5% | [Settings % Li & | £ Properties 53

<terminated> matrixMul on juhydra
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "Tesla K40m" with compute capability 3.5 ¥ Duration

Default

Session
MatrixA(320,320), MatrixB(640,320)

Computing result using CUDA Kernel...

done

Performance= 351.01 GFlop/s, Time= ©.373 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS

Andreas Herten | #27|34

Visual Profiler
Analysi

NVIDIA Visual Profiler
L S w

§ *NewSession1 X

Driver API
Profiling Overhead

= [0] Tesla K40m
= Context 1 (CUDA)

Analysis X [Details & Console [Settings [Properties 5% =a

y Result:
| Reset All [Analy Results void matrixMulCUDA<int=32>(fl...
Start
End
Kernel ... Limiter Duration
Grid Size
Block Size
Registers/Thread
Shared Memory/Block

Kernel Compute ¥Occupancy

Theoretical
v Shared Memory Configuration

Shared Memory Requested

Shared Memory Executed

Global ...Pattern Shared Memory Bank Size

bandwidth of the load/store instruction units within the muitiprocessors.

void matrixMulCUDA<int=32>(f

Kernel Latency

Kernel Memory

Shared ...Pattern

holtz Associati

Diverge...ecution

Andreas Herten

#27|34

Member of the Helmholtz Association

#))0LICH

FORSCHUNGSZENTRUM

Appendix

Glossary & References

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #2834

Association

Member of the Helmholtz

Glossary | OJULICH

FORSCHUNGSZENTRUM

CPI Cycles per Instructions; a metric to determine efficiency of an architecture
or program. 9, 10

IPC Instructions per Cycle; a metric to determine efficiency of an architecture
or program. 9, 10

MPI The Message Passing Interface, a API definition for multi-node computing.
14

NVIDIA US technology company creating GPUs. 46, 75, 76

OpenMP Directive-based programming, primarily for multi-threaded machines. 14

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #2934

Association

Member of the Helmholtz

Glossary Il #) JULICH

FORSCHUNGSZENTRUM

PAPI The Performance API, a C/C++ API for querying performance counters. 2,
31, 35,36, 37, 38,39,40,41,42,43,44,45, 47,48

perf Part of the Linux kernel which facilitates access to performance counters;
comes with command line utilities. 2, 31, 32, 33, 34, 35, 36, 37, 38, 47, 48

POWERS8 CPU architecture from IBM, available also under the OpenPOWER
Foundation. 2, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 47,
48,49, 52,53

Score-P Collection of tools for instrumenting and subsequently scoring
applications to gain insight into the program’s performance. 31, 47, 48

CPU Central Processing Unit. 9, 10, 12,13, 14, 82

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #30(34

Association

Member of the Helmholtz

Glossary lll

GPU Graphics Processing Unit. 14, 35, 36, 37, 38, 46, 47, 48, 82

PMU Performance Measuring Unit. 16, 17, 18, 19

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

#) JULICH

FORSCHUNGSZENTRUM

#3134

Association

Member of the Helmholtz

References: Images, Graphics |

[3] Score-P Authors. Score-P User Manual. URrL:
http://www.vi-hps.org/projects/score-p/.

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

)

JULICH

FORSCHUNGSZENTRUM

#3234

Member of the Helmholtz Association

References: Literature | O JULICH

FORSCHUNGSZENTRUM

[1] Terje Mathisen. Pentium Secrets. URL:
http://www.gamedev.net/page/resources/_/technical/general-
programming/pentium-secrets-r213 (pages 12,13).

[2] Donald E. Knuth. “Structured Programming with Go to Statements”. In: ACM Comput.
Surv. 6.4 (Dec. 1974), pp. 261-301. 1sSN: 0360-0300. DOI: 10.1145/356635.356640.
URL: http://doi.acm.org/10.1145/356635.356640 (page 51).

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 #3334

Member of the Helmholtz Association

The End

Thanks for reading until here!

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017

)

JULICH

FORSCHUNGSZENTRUM

#3434

