
Performance Improvement
and Tuning on POWER8
Processors

Dr. Archana Ravindar
IBM Systems
Supercomputing 2017

For a more recent version of slides please refer to

https://indico-jsc.fz-juelich.de/event/53/

IBM Systems

POWER8

HBM

DDR4

HBM

8
0

 G
B

/s

NVLink Enables Fast Unified Memory Access
between CPU & GPU Memories

N
V

Li
n

k

GPU

GPU

Motivation for the Session

� Heterogenous Architectures consist of
the CPU along with Accelerator Units
such as GPU

� Performance of applications run on these
systems depends on performance of
CPU and GPU

� If Performance of CPU is sub-optimal it
can gate the performance of the overall
system

� Its worth learning about strategies to
improve performance of applications on
CPU

Minsky System

IBM Systems

Role of the Compiler, Source changes on CPU performance

• Modern day Processors are designed on a Pipeline

based architecture

• A Compiler’s job is not only to generate code that can
run on a native platform but also to optimize code
such that the code flows smoothly through the
pipeline without causing bottlenecks

• The optimization phase is where the Compiler carries
out this Job

• Compiler optimization strategies are designed to
work ideally well for all cases

• To achieve extra performance in specific situations,
one can use pragmas/flags

• Hand Tuning based on source and assembly
changes also gives an extra boost to performance

| 3

IBM Systems

Ways to Optimize CPU Performance

• Most common reason for low CPU Performance- Pipeline
Bottlenecks-

• Excessive Dependencies among Instructions

• Branches / Too much decision making

• Cache Misses

• Load hit stores

• Additional Ways to optimize CPU Performance

• SIMDization, Serial v/ parallel, Source code Tuning

| 4

IBM Systems

Strategies to Work Around Pipeline Bottlenecks

• We will touch upon today how we can work around these bottlenecks -

• Excessive Dependencies among Instructions

• Better Scheduling- Inlining- Unrolling

• Branches / Too much decision making

• Inlining, Indirect Call Promotion, source code strategies

• Cache Misses

• Prefetching, Data structure/code rewrite

• Load hit stores

• Inlining, vectorization

| 5

IBM Systems

Excessive Dependencies among Instructions

• Dependencies brakes speed of execution : Inspite of having multiple functional units and
pipeline of these units, Execution becomes serial

• Solution: Scheduling

• Place non-dependent operations in between such a chain of

instructions

• Compiler and the hardware does this automatically

• The following optimizations/helps the compiler do a better job

of scheduling- Inlining, Unrolling

• Inlining

-qinline=auto:level=N (XL)

-finline-functions(LLVM, GCC)

__attribute__((always_inline) Type func-name(params) {... }

• Unrolling:

• -qunroll, -funroll-loops | 6

addi r13, r13, r15

ld r13, N(r13)

sub r14, r13, r16

xor r17, r14, r15

cmpl cr7, r17, r14

IBM Systems

Branches

• Excessive branches can also brake execution
speed

• POWER8 processor has a branch
mispredictor that can predict branch direction
and allow execution to go on based on
predicted branch decision

• How you can help speed up performance?

• Use ?: for one line branches

• Compiler generates POWERpc instruction
isel for one line branches (-misel)

• Provide hints in source code to indicate the
expected values of expressions appearing in
branch conditions (long __builtin_expect(long
expression, long value);) (hint whether branch

is more likely to be taken/not)

| 7

if (CAPTURED(themove) == s->sboard[FROM(themove)]) {

prob -= 30;

}

if (s->sboard[FROM(themove)] == wpawn || s-

>sboard[FROM(themove)] == bpawn) {

prob -= 30;

}

if (CAPTURED(themove) != npiece) {

prob -= 10;

}

if (CAPTURED(themove) == wqueen || CAPTURED(themove) ==

bqueen) {

prob -= 30;

}

if (PROMOTED(themove) != 0

&& PROMOTED(themove) != npiece

&& PROMOTED(themove) != wqueen

&& PROMOTED(themove) != bqueen) {

prob += 40;

}

IBM Systems

Cache Misses

• Memory in POWER architectures is organized in a hierarchy

• L1 cache : Closest memory to the processor and the fastest, followed by L2, L3 upto main memory

• Memory is most distant to the processor and slowest

• Data cache : stores data, instruction cache: stores instructions

• Data cache misses can stall instructions in the pipeline causing a cascading effect on all those iinstructions

dependent on it data

• If the compiler has done a good job of scheduling, usually the processor can find some thing else to do in

the meanwhile

| 8

�L1 $

�(3 cyc)

�L2 $

�(8.5 cyc)

�L3 $

�(26 cyc)
�Memory

�(300+ cyc)

IBM Systems

Hardware Prefetching

• Power8 has the most advanced Prefetch Engine!

• Access patterns are automatically detected by the hardware (Patterns must be regular and
not random to be detectable by HW prefetcher)

• Hardware Prefetching is staged

• Data is brought to L3 first

• Later transferred from L3 to L1

• Prefetch requests are paced by rate of consumption

• Minimizes Pollution of cache

• To turn on Prefetching (ppc64_cpu –dscr=0)

• Specific levels of prefetching can be set by assigning appropriate values to DSCR by
ppc64_cpu –dscr=0xNNN

| 9

IBM Systems

Software Prefetching

• Under programmer’s control

• Load, store address/stream can be specified (dcbt/dcbtst)

• Requires us to include the header file <builtins.h>

• Ex: __dcbt((void*)address);

• Total number of streams possible: 16

• GCC compiler: programmers can use __builtin_prefetch(address)

• XL compiler: -qprefetch=aggressive will automatically insert dcbt calls

• GCC compiler : -qprefetch-loop-arrays

| 10

IBM Systems

If Prefetching does not help

• If you have to live with cache misses and cannot prevent it

• The compiler should have enough leg room to move instructions around so that it places
variables that are loaded from cache far from where it is used

• Ways to increase opportunities for compilers-

Inlining

Unrolling

Indirect call Promotion

| 11

IBM Systems

Load Hit Stores

| 12

Array[address]=value // Store

…..

= … Array[address] // Load

• Can occur while reading something immediately which you have just written

• LHS occurs when a load instruction tries to load an address to which there has been

a recent store prior to it (which might not have completed yet)

• LHS causes an instruction to be rejected and reissued

• In essence, an instruction that faces load hit stores causes itself and other

dependent instructions to take longer to execute

• Penalty in cycles: (Normal: 3 cycles LHS : upto 20 cycles!!)

• POWER9 architecture is designed to avoid any penalty due to Load hit stores

IBM Systems

Pragmas/Flags to work around Load Hit Stores

If such situations are inevitable, use #pragma unroll(4) or unroll(8) (pragma will span out instructions so that
compiler can schedule them in such a way to avoid LHS)

#pragma unroll(8)

for(i=0;i<N;i++) {

for(j=0;j<n-i;j++) {

if(array[j] > array[j+1]) {

......

array[j+1]=...;

}

}

}

Use aggressive inlining to reduce LHS (reduces save/restore operations in short routines)

• XL: -qinline=auto:level=N (N ranges from 1 to 10). LLVM/GCC: -finline-functions

• Even at assembly level, you can insert nops between the offending store and load to reduce impact

| 13

IBM Systems

Summary of Flags

Flag Kind XL GCC/LLVM
Equivalent pragma /
attributes Benefit Drawbacks

Unrolling "-qunroll" "-funroll-loops" #pragma unroll(N)

Unrolls loops ; increases
opportunities pertaining to
scheduling for compiler

Increases register
pressure

Inlining "-qinline=auto:level=N" "-finline-functions" Inline always attribute

increases opportunities for
scheduling; Reduces
branches and loads/stores

Increases register
pressure; increases code
size

Enum small "-qenum=SMALL" "-fshort-enums" - Reduces memory footprint
Can cause issues in
alignment

isel instructions "-misel"

generates isel instruction
instead of branch;
reduces pressure on
branch predictor unit

latency of isel is a bit
higher; Use if branches
are not predictable easily

General tuning "-qtune=PWR8" "-mcpu=power8"

64bit compilation "-q64" "-m64"

Prefetching "-qprefetch" "-fprefetch-loop-arrays"
__dcbt/__dcbtst,
_builtin_prefetch reduces cache misses

Can increase memory
traffic particularly if
prefetched values are not
used

Generate annotation
reports "-qlist -qreport"

"-fdump-tree-all" for GCC
"-Rpass=[a-z]*" for LLVM

| 14

IBM Systems

Additional Ways to Optimize CPU Performance

• Single Instruction Single Data (SISD) v/s Single Instruction Multiple Data (SIMD)

• If similar operation has to be performed on multiple data, use vectorization

• Serial v/s Parallel Execution

• If there are multiple tasks which do not have a dependency amongst each other and can be
done in parallel use a framework such as OpenMP that can perform Tasks in 1/Nth time with
N threads

• Source code change

� Ex: Costly library calls: Try writing a macro instead of making a call whenever possible

| 15

IBM Systems

SISD v/ SIMD

• Compiler automatically vectorizes code which has repeating instructions for multiple data
units when we use higher optimization flags, -qvsx –qaltivec (XL), -mvsx, -
maltivec(LLVM,GCC)

• How the users can help compilers automatically vectorize code

• Avoid branches inside loops, avoid excessive use of pointers inside hot loops

• SIMD in OpenMP: Pragmas to support SIMDization

• Following Loop gets vectorized and executes faster compared to non SIMD version

#pragma omp simd

for(int i=0;i<NUM;i++)

c[i]=a[i]*b[i]-500;

| 16

IBM Systems

OpenMP SIMD pragmas

• Additional helpful OpenMP SIMD pragmas : inbranch, notinbranch

• #pragma omp simd inbranch

• Function always called from inside an if statement

• #pragma omp simd notinbranch

• Function never called from inside an if statement

• If loop has parallel instructions along with a cumulative operation, use reduction attribute

#pragma omp simd reduction(+:loopsum)

for(int i=0;i<NUM;i++) {

c[i]=a[i]*b[i]-500;

loopsum+=c[i];

}

| 17

IBM Systems

Advantages of SIMD-ization

• Reduces number of instructions executed as a single instruction executes on multiple data
at a given time

• Uses vector registers and lessens burden on regular CPU registers

• Reduces Memory Traffic

• Improves Performance and Instructions executed per cycle (IPC/throughput)

| 18

IBM Systems

Serial V/s Parallel Execution

If your work has several parallel components you can use OpenMP pragmas to run code in
parallel

#pragma omp parallel for

for(int ix = ix_start; ix < ix_end; ix++)

{

A[iy*nx+ix] = Anew[iy*nx+ix];

}

The parallel for pragma can be used for nested loops as well
#pragma omp parallel for

for(int iy = start; iy < end; iy++) {

#pragma omp parallel for

for(int ix = start; ix < end; ix++) {

}

}

| 19

IBM Systems

Controlling number of Threads

• We can control the number of threads at the command line when executing a parallelized
version of code using omp parallel for

• OMP_NUM_THREADS=8 time ./application <params>

• OMP_NUM_THREADS=16 time ./application <params>

• OMP_NUM_THREADS=32 time ./application <params>

• The ideal number of threads depends on the application that is parallelized

• It also depends on number of cores, SMT levels, threads per core

• Large number of threads do not always help as thread book-keeping overhead can
overtake benefit of parallelization

| 20

IBM Systems

Binding Threads to CPU

• We can use GOMP_CPU_AFFINITY="0 8 16 24 32 40 48 56" OMP_NUM_THREADS=8
time ./application <params> to bind first thread to CPU0, second thread to CPU8, … so on

• The ordering of CPU numbers determines performance of the application

• If all threads are bound to a single CPU execution speed slows down

• To choose the right CPU number on a POWER Linux system, we can consult the file
/sys/devices/system/cpu/cpu0/topology/thread_siblings_list

• If the POWER Linux system is configured to be SMT=8 this file contains

0-7

Indicates threads 0-7 run on CPU0 while 8-15 run on CPU1, and so on…

| 21

IBM Systems

Source code Tuning: Example Costly Library Function Calls

In some situations, performance of your application is gated by a costly library call

33.17% poisson2d poisson2d [.] poisson2d_reference

26.98% poisson2d poisson2d [.] 000000c9.plt_call.fmax@@GLIBC_2.17

25.82% poisson2d poisson2d [.] main

Typically applications tend to use a lot of library calls

Sometimes one can replace the function call by a simple macro

For Illustration purposes-

// Math function call double fmax(double x, double y);

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-Aref[iy*nx+ix]));

can be replaced by

double tmp = fabsr(Anew[iy*nx+ix]-Aref[iy*nx+ix]);

error = (error > tmp) ? error:tmp ;

| 22

IBM Systems

In closing

• CPU performance is as important as GPU performance in a Heterogenous architecture

• We saw strategies to improve CPU performance

• By avoiding bottlenecks possible in the pipeline

• By vectorization strategies

• By Parallelization strategies

• Additional strategies to improve performance

• The Hands-on Session will touch upon examples on some of the strategies discussed in
today’s session

| 23

Disclaimer: This presentation is intended to represent the views of the author rather than IBM and the recommended solutions are not

guaranteed on sub optimal conditions.

