Performance Improvement
and Tuning on POWERS
Processors

Dr. Archana Ravindar
IBM Systems
Supercomputing 2017

For a more recent version of slides please refer to
https://indico-jsc.fz-juelich.de/event/53/

/

Motivation for the Session

= Heterogenous Architectures consist of
the CPU along with Accelerator Units
such as GPU

= Performance of applications run on these
systems depends on performance of
CPU and GPU

= |f Performance of CPU is sub-optimal it
can gate the performance of the overall
system

= |ts worth learning about strategies to
improve performance of applications on
CPU

HBM

HBM Minsky System

NVLink Enables Fast Unified Memory Access

between CPU & GPU Memories

IBM Systems

Role of the Compiler, Source changes on CPU performance

» Modern day Processors are designed on a Pipeline
based architecture

« A Compiler’'s job is not only to generate code that can
run on a native platform but also to optimize code
such that the code flows smoothly through the
pipeline without causing bottlenecks

« The optimization phase is where the Compiler carries
out this Job

« Compiler optimization strategies are designed to
work ideally well for all cases

» To achieve extra performance in specific situations,
one can use pragmas/flags

» Hand Tuning based on source and assembly
changes also gives an exira boost to performance

IBM Systems 3

Ways to Optimize CPU Performance

« Most common reason for low CPU Performance- Pipeline
Bottlenecks-

* Excessive Dependencies among Instructions
* Branches / Too much decision making
 Cache Misses
e Load hit stores
 Additional Ways to optimize CPU Performance
* SIMDization, Serial v/ parallel, Source code Tuning

IBM Systems 4

Strategies to Work Around Pipeline Bottlenecks

« We will touch upon today how we can work around these bottlenecks -
* Excessive Dependencies among Instructions
« Better Scheduling- Inlining- Unrolling
* Branches / Too much decision making
« Inlining, Indirect Call Promotion, source code strategies
e Cache Misses
« Prefetching, Data structure/code rewrite
* Load hit stores
* Inlining, vectorization

IBM Systems 5

Excessive Dependencies among Instructions

« Dependencies brakes speed of execution : Inspite of having multiple functional units and
pipeline of these units, Execution becomes serial

» Solution: Scheduling | | addi r13, rl3, ril5
« Place non-dependent operations in between such a chain of
instructions 1d rl13, N(rl3)

« Compiler and the hardware does this automatically
« The following optimizations/helps the compiler do a better job
of scheduling- Inlining, Unrolling

sub rl4, rl3, rlé6

xor rl7, rl4d, rl5

* Inlining
-qginline=auto:level=N (XL) cmpl cr7, rl7, rl4
-finline-functions(LLVM, GCC)
__attribute__ ((always_inline) Type func-name(params) {... }

« Unrolling:

-qunroll, -funroll-loops |

IBM Systems

Branches

» Excessive branches can also brake execution if (CAPTURED (themove) == s->sboard [FROM(themove)]) {
Speed prob -= 30;
}
« POWERS processor has a branch if (s->sboard[FROM(themove)] == wpawn || s-
. >sboard [FROM (themove)] == bpawn) {
mispredictor that can predict branch direction prob —= 30;
and allow execution to go on based on)
predicted branch decision i ‘CAPE"RED:;“‘*’“‘"*’ += mpiece) |
prob -= 10;
« How you can help speed up performance?)
° USG r) fOf One ||ne branCheS bquei.:) (?APTURED(themove) == wqueen || CAPTURED (themove) ==
e Compiler generates POWERpc instruction prob —= 30;
. . . }
isel for one line branches (-misel) 1 (PROMOTED (themove) 1= O
* Provide hints in source code to indicate the && PROMOTED (themove) != npiece
expected values of expressions appearing in ©€ PROUOTED (themove) 1= waueen
. e && PROMOTED (themove) != bqueen) {
branch conditions (long __ builtin_expect(long prob += 40;
expression, long value);) (hint whether branch)

is more likely to be taken/not)

IBM Systems 7

Cache Misses

aL1$ L2 $ "L3 %

M
(3 cyo) *(8.5 cyo) *(26 cyc) ooy

=(300+ cyc)

* Memory in POWER architectures is organized in a hierarchy

* L1 cache : Closest memory to the processor and the fastest, followed by L2, L3 upto main memory
* Memory is most distant to the processor and slowest
« Data cache : stores data, instruction cache: stores instructions

+ Data cache misses can stall instructions in the pipeline causing a cascading effect on all those iinstructions

dependent on it data

« If the compiler has done a good job of scheduling, usually the processor can find some thing else to do in

the meanwhile

IBM Systems 8

Hardware Prefetching

Power8 has the most advanced Prefetch Engine!

Access patterns are automatically detected by the hardware (Patterns must be regular and
not random to be detectable by HW prefetcher)

Hardware Prefetching is staged

* Data is brought to L3 first

* Later transferred from L3 to L1

Prefetch requests are paced by rate of consumption
* Minimizes Pollution of cache

To turn on Prefetching (ppc64_cpu —dscr=0)

Specific levels of prefetching can be set by assigning appropriate values to DSCR by
ppc64 cpu —dscr=0xNNN

IBM Systems]

Software Prefetching

Under programmer’s control

Load, store address/stream can be specified (dcbt/dcbtst)
* Requires us to include the header file <builtins.h>
* Ex: _ dcbt((void*)address);
« Total number of streams possible: 16
« GCC compiler: programmers can use __ builtin_prefetch(address)
« XL compiler: -gprefetch=aggressive will automatically insert dcbt calls

« GCC compiler : -gprefetch-loop-arrays

IBM Systems 10

If Prefetching does not help

« If you have to live with cache misses and cannot prevent it

« The compiler should have enough leg room to move instructions around so that it places
variables that are loaded from cache far from where it is used

« Ways to increase opportunities for compilers-
Inlining
Unrolling
Indirect call Promotion

IBM Systems 11

Load Hit Stores

Array[address]=value // Store

.. Array|[address] // Load

« Can occur while reading something immediately which you have just written

 LHS occurs when a load instruction tries to load an address to which there has been
a recent store prior to it (which might not have completed yet)

« LHS causes an instruction to be rejected and reissued

 |n essence, an instruction that faces load hit stores causes itself and other
dependent instructions to take longer to execute

« Penalty in cycles: (Normal: 3 cycles LHS : upto 20 cycles!!)

« POWERS9 architecture is designed to avoid any penalty due to Load hit stores

IBM Systems 12

Pragmas/Flags to work around Load Hit Stores

If such situations are inevitable, use #pragma unroll(4) or unroll(8) (pragma will span out instructions so that
compiler can schedule them in such a way to avoid LHS)

#pragma unroll (8)
for (i=0; i<N; i++) {
for (j=0; j<n-i; j++) {
if (array[]j] > array[j+1]) {
array[j+1]=...;
}
}

Use aggressive inlining to reduce LHS (reduces save/restore operations in short routines)
e XL: -ginline=auto:level=N (N ranges from 1 to 10). LLVM/GCC: -finline-functions
* Even at assembly level, you can insert nops between the offending store and load to reduce impact

IBM Systems 13

Summary of Flags

Unrolls loops ; increases
opportunities pertaining to Increases register
Unrolling "-qunroll" "-funroll-loops” #pragma unroll(N) scheduling for compiler pressure

increases opportunities forIncreases register

scheduling; Reduces pressure; increases code
Inlining "-ginline=auto:level=N" "-finline-functions” Inline always attribute branches and loads/stores size
Can cause issues in
Enum small "-genum=SMALL" "-fshort-enums” - Reduces memory footprintalignment
generates isel instruction
instead of branch; latency of isel is a bit
reduces pressure on higher; Use if branches
isel instructions "-misel" branch predictor unit are not predictable easily
General tuning "-qtune=PWR8" "-mcpu=powerg"
64bit compilation "-q64" "-m64"
Can increase memory
traffic particularly if
__dcbt/__dcbtst, prefetched values are not
Prefetching "-gprefetch” "-fprefetch-loop-arrays” _builtin_prefetch reduces cache misses used
Generate annotation "-fdump-tree-all" for GCC
reports "-qglist -qreport" "-Rpass=[a-z]*" for LLVM

IBM Systems 14

Additional Ways to Optimize CPU Performance

« Single Instruction Single Data (SISD) v/s Single Instruction Multiple Data (SIMD)
* If similar operation has to be performed on multiple data, use vectorization
» Serial v/s Parallel Execution

* If there are multiple tasks which do not have a dependency amongst each other and can be

done in parallel use a framework such as OpenMP that can perform Tasks in 1/Nth time with
N threads

» Source code change
Ex: Costly library calls: Try writing a macro instead of making a call whenever possible

IBM Systems 15

SISD v/ SIMD

« Compiler automatically vectorizes code which has repeating instructions for multiple data
units when we use higher optimization flags, -qvsx —qaltivec (XL), -mvsx, -
maltivec(LLVM,GCCQC)

« How the users can help compilers automatically vectorize code
* Avoid branches inside loops, avoid excessive use of pointers inside hot loops

« SIMD in OpenMP: Pragmas to support SIMDization
» Following Loop gets vectorized and executes faster compared to non SIMD version

#fpragma omp simd
for (int i=0; i1<NUM; i++)
cli]=ali]*b[i]-500;

IBM Systems 16

OpenMP SIMD pragmas

« Additional helpful OpenMP SIMD pragmas : inbranch, notinbranch
« #pragma omp simd inbranch

» Function always called from inside an if statement

« #pragma omp simd notinbranch

» Function never called from inside an if statement

» If loop has parallel instructions along with a cumulative operation, use reduction attribute

#fpragma omp simd reduction (+:loopsum)
for (int 1=0; i<NUM; i++) {
cl[il=al[i]l*b[1]1-500;

loopsum+=c[i];

}

IBM Systems 17

Advantages of SIMD-ization

» Reduces number of instructions executed as a single instruction executes on multiple data
at a given time

» Uses vector registers and lessens burden on regular CPU registers
* Reduces Memory Traffic

» Improves Performance and Instructions executed per cycle (IPC/throughput)

IBM Systems 18

Serial V/s Parallel Execution

If your work has several parallel components you can use OpenMP pragmas to run code in
parallel

#pragma omp parallel for
for(int ix = ix_start; ix < ix_end; ix++)
{
Afiy*nx+ix] = Anew[iy*nx+ix];

}

The parallel for pragma can be used for nested loops as well
#pragma omp parallel for
for(int iy = start; iy < end; iy++) {
#pragma omp parallel for
for(int ix = start; ix < end; ix++) {
}
}

IBM Systems 19

Controlling number of Threads

We can control the number of threads at the command line when executing a parallelized

version of code using omp parallel for
OMP_NUM_THREADS=8 time ./application <params>
OMP_NUM_THREADS=16 time ./application <params>
OMP_NUM_THREADS=32 time ./application <params>

The ideal number of threads depends on the application that is parallelized
It also depends on number of cores, SMT levels, threads per core

Large number of threads do not always help as thread book-keeping overhead can
overtake benefit of parallelization

IBM Systems

20

Binding Threads to CPU

We can use GOMP_CPU_AFFINITY="0 8 16 24 32 40 48 56" OMP_NUM_THREADS=8

time ./application <params> to bind first thread to CPUOQ, second thread to CPUS, ... so on

The ordering of CPU numbers determines performance of the application

If all threads are bound to a single CPU execution speed slows down

To choose the right CPU number on a POWER Linux system, we can consult the file

/sys/devices/system/cpu/cpul/topology/thread_siblings_list

If the POWER Linux system is configured to be SMT=8 this file contains
0-7
Indicates threads 0-7 run on CPUO while 8-15 run on CPU1, and so on...

IBM Systems

21

Source code Tuning: Example Costly Library Function Calls
In some situations, performance of your application is gated by a costly library call

33.17% poisson?2d poisson2d poisson2d reference

[.]
26.98% poisson2d poisson2d [.] 000000c9.plt_call.fmax@@GLIBC_2.17
25.82% poisson2d poisson2d [.]

Typically applications tend to use a lot of library calls
Sometimes one can replace the function call by a simple macro
For lllustration purposes-

// Math function call double fmax(double x, double y);

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-Aref[iy*nx+ix]));

can be replaced by

double tmp = fabsr(Anew[iy*nx+ix]-Aref[iy*nx+ix]);

error = (error > tmp) ? error:tmp ;

IBM Systems

22

In closing

« CPU performance is as important as GPU performance in a Heterogenous architecture

« We saw strategies to improve CPU performance
* By avoiding bottlenecks possible in the pipeline
* By vectorization strategies
* By Parallelization strategies
* Additional strategies to improve performance

« The Hands-on Session will touch upon examples on some of the strategies discussed in
today’s session

Disclaimer: This presentation is intended to represent the views of the author rather than IBM and the recommended solutions are not
guaranteed on sub optimal conditions.

IBM Systems 23

