000840176 001__ 840176
000840176 005__ 20210129231752.0
000840176 0247_ $$2doi$$a10.1002/chem.201605251
000840176 0247_ $$2ISSN$$a0947-6539
000840176 0247_ $$2ISSN$$a1521-3765
000840176 0247_ $$2pmid$$apmid:28196305
000840176 0247_ $$2WOS$$aWOS:000400945500017
000840176 0247_ $$2altmetric$$aaltmetric:18586590
000840176 037__ $$aFZJ-2017-07731
000840176 082__ $$a540
000840176 1001_ $$0P:(DE-HGF)0$$aWegner, Susann$$b0
000840176 245__ $$aSoft, Wet-Chemical Synthesis of Metastable Superparamagnetic Hexagonal Close-Packed Nickel Nanoparticles in Different Ionic Liquids
000840176 260__ $$aWeinheim$$bWiley-VCH$$c2017
000840176 3367_ $$2DRIVER$$aarticle
000840176 3367_ $$2DataCite$$aOutput Types/Journal article
000840176 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511526439_11654
000840176 3367_ $$2BibTeX$$aARTICLE
000840176 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840176 3367_ $$00$$2EndNote$$aJournal Article
000840176 520__ $$aThe microwave-induced decomposition of bis{N,N′-diisopropylacetamidinate}nickel(II) [Ni{MeC(NiPr)2}2] or bis(1,5-cyclooctadiene)nickel(0) [Ni(COD)2] in imidazolium-, pyridinium-, or thiophenium-based ionic liquids (ILs) with different anions (tetrafluoroborate, [BF4]−, hexafluorophosphate, [PF6]−, and bis(trifluoromethylsulfonyl)imide, [NTf2]−) yields small, uniform nickel nanoparticles (Ni NPs), which are stable in the absence of capping ligands (surfactants) for more than eight weeks. The soft, wet-chemical synthesis yields the metastable Ni hexagonal close-packed (hcp) and not the stable Ni face-centered cubic (fcc) phase. The size of the nickel nanoparticles increases with the molecular volume of the used anions from about 5 nm for [BF4]− to ≈10 nm for [NTf2]− (with 1-alkyl-3-methyl-imidazolium cations). The n-butyl-pyridinium, [BPy]+, cation ILs reproducibly yield very small nickel nanoparticles of 2(±1) nm average diameter. The Ni NPs were characterized by high-resolution transmission electron microscopy (HR-TEM) and powder X-ray diffraction. An X-ray photoelectron spectroscopic (XPS) analysis shows an increase of the binding energy (EB) of the electron from the Ni 2p3/2 orbital of the very small 2(±1) nm diameter Ni particles by about 0.3 eV to EB=853.2 eV compared with bulk Ni0, which is traced to the small cluster size. The Ni nanoparticles show superparamagnetic behavior from 150 K up to room temperature. The saturation magnetization of a Ni (2±1 nm) sample from [BPy][NTf2] is 2.08 A m2 kg−1 and of a Ni (10±4 nm) sample from [LMIm][NTf2] it is 0.99 A m2 kg−1, ([LMIm]=1-lauryl-3-methyl- imidazolium). The Ni NPs were active catalysts in IL dispersions for 1-hexene or benzene hydrogenation. Over 90 % conversion was reached under 5 bar H2 in 1 h at 100 °C for 1-hexene and a turnover frequency (TOF) up to 1330 molhexane (molNi)−1 h−1 or in 60 h at 100 °C for benzene hydrogenation and TOF=23 molcyclohexane (molNi)−1 h−1.
000840176 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000840176 588__ $$aDataset connected to CrossRef
000840176 7001_ $$0P:(DE-HGF)0$$aRutz, Christina$$b1
000840176 7001_ $$0P:(DE-HGF)0$$aSchütte, Kai$$b2
000840176 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b3
000840176 7001_ $$0P:(DE-HGF)0$$aBushmelev, Alexey$$b4
000840176 7001_ $$0P:(DE-HGF)0$$aSchmidt, Annette$$b5
000840176 7001_ $$0P:(DE-HGF)0$$aDilchert, Katharina$$b6
000840176 7001_ $$0P:(DE-HGF)0$$aFischer, Roland A.$$b7
000840176 7001_ $$00000-0002-6288-9605$$aJaniak, Christoph$$b8$$eCorresponding author
000840176 773__ $$0PERI:(DE-600)1478547-x$$a10.1002/chem.201605251$$gVol. 23, no. 26, p. 6330 - 6340$$n26$$p6330 - 6340$$tChemistry - a European journal$$v23$$x0947-6539$$y2017
000840176 909CO $$ooai:juser.fz-juelich.de:840176$$pVDB
000840176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b3$$kFZJ
000840176 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000840176 9141_ $$y2017
000840176 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840176 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840176 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840176 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840176 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM-EUR J : 2015
000840176 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840176 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840176 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840176 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840176 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840176 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM-EUR J : 2015
000840176 920__ $$lyes
000840176 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000840176 980__ $$ajournal
000840176 980__ $$aVDB
000840176 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000840176 980__ $$aUNRESTRICTED