001     840182
005     20210129231752.0
024 7 _ |a 10.1002/open.201600105
|2 doi
024 7 _ |a 2191-1355
|2 ISSN
024 7 _ |a 2191-1363
|2 ISSN
024 7 _ |a 2128/15964
|2 Handle
024 7 _ |a altmetric:14705792
|2 altmetric
024 7 _ |a pmid:28168159
|2 pmid
037 _ _ |a FZJ-2017-07737
082 _ _ |a 540
100 1 _ |a Schütte, Kai
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Synthesis of Metal Nanoparticles and Metal Fluoride Nanoparticles from Metal Amidinate Precursors in 1-Butyl-3-Methylimidazolium Ionic Liquids and Propylene Carbonate
260 _ _ |a Weinheim
|c 2017
|b Wiley-VCH-Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511526887_11658
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Decomposition of transition-metal amidinates [M{MeC(NiPr)2}n] [M(AMD)n; M=MnII, FeII, CoII, NiII, n=2; CuI, n=1) induced by microwave heating in the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (triflate) ([BMIm][TfO]), and 1-butyl-3-methylimidazolium tosylate ([BMIm][Tos]) or in propylene carbonate (PC) gives transition-metal nanoparticles (M-NPs) in non-fluorous media (e.g. [BMIm][Tos] and PC) or metal fluoride nanoparticles (MF2-NPs) for M=Mn, Fe, and Co in [BMIm][BF4]. FeF2-NPs can be prepared upon Fe(AMD)2 decomposition in [BMIm][BF4], [BMIm][PF6], and [BMIm][TfO]. The nanoparticles are stable in the absence of capping ligands (surfactants) for more than 6 weeks. The crystalline phases of the metal or metal fluoride synthesized in [BMIm][BF4] were identified by powder X-ray diffraction (PXRD) to exclusively Ni- and Cu-NPs or to solely MF2-NPs for M=Mn, Fe, and Co. The size and size dispersion of the nanoparticles were determined by transmission electron microscopy (TEM) to an average diameter of 2(±2) to 14(±4) nm for the M-NPs, except for the Cu-NPs in PC, which were 51(±8) nm. The MF2-NPs from [BMIm][BF4] were 15(±4) to 65(±18) nm. The average diameter from TEM is in fair agreement with the size evaluated from PXRD with the Scherrer equation. The characterization was complemented by energy-dispersive X-ray spectroscopy (EDX). Electrochemical investigations of the CoF2-NPs as cathode materials for lithium-ion batteries were simply evaluated by galvanostatic charge/discharge profiles, and the results indicated that the reversible capacity of the CoF2-NPs was much lower than the theoretical value, which may have originated from the complex conversion reaction mechanism and residue on the surface of the nanoparticles.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Barthel, Juri
|0 P:(DE-Juel1)130525
|b 1
700 1 _ |a Endres, Manuel
|0 P:(DE-Juel1)166532
|b 2
700 1 _ |a Siebels, Marvin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Smarsly, Bernd M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Yue, Junpei
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Janiak, Christoph
|0 0000-0002-6288-9605
|b 6
|e Corresponding author
773 _ _ |a 10.1002/open.201600105
|g Vol. 6, no. 1, p. 137 - 148
|0 PERI:(DE-600)2655605-4
|n 1
|p 137 - 148
|t ChemistryOpen
|v 6
|y 2017
|x 2191-1363
856 4 _ |u https://juser.fz-juelich.de/record/840182/files/Sch-tte_et_al-2017-ChemistryOpen.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840182/files/Sch-tte_et_al-2017-ChemistryOpen.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840182/files/Sch-tte_et_al-2017-ChemistryOpen.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840182/files/Sch-tte_et_al-2017-ChemistryOpen.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840182/files/Sch-tte_et_al-2017-ChemistryOpen.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840182/files/Sch-tte_et_al-2017-ChemistryOpen.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:840182
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130525
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMISTRYOPEN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21