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Route to achieving perfect B-site ordering in double
perovskite thin films

Josée E Kleibeuker1, Eun-Mi Choi1, Edward D Jones1, Tse-Min Yu2, Bianca Sala2, Belinda A MacLaren2,
Demie Kepaptsoglou3, David Hernandez-Maldonado3, Quentin M Ramasse3, Lewys Jones4, Juri Barthel5,
Ian MacLaren2 and Judith L MacManus-Driscoll1

Double perovskites (DP, A2BB’O6) exhibit a breadth of multifunctional properties with a huge potential range of applications,

including magneto-optic and spintronic devices. However, spontaneous cation ordering is limited by the similar size and charge

of B and B’ cations. We introduce a route to stimulate B-site rock-salt ordering. By growing thin films on (111)-oriented

substrates, ‘in-plane’ strain acts on the intrinsically tilted oxygen octahedra of the DP and produces two different B-site cages

(in size and shape), stimulating spontaneous cation ordering. For the ferromagnetic insulator La2CoMnO6, clear Co/Mn ordering

was achieved by growing on (111)-oriented substrates. The difference in B-site cages was further enhanced when grown under

minor (111) in-plane compressive strain, resulting in long-range ordering with a saturation magnetization of 5.8 μB/formula unit

(f.u.), close to the theoretical 6 μB/f.u., without antiferromagnetic behavior. Our approach enables the study of many new

ordered DPs which have never been made before.
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INTRODUCTION

Bi-component perovskites, AA’BB’O6, both artificially grown as
ultrashort period perovskite-oxide superlattices and as spontaneously
ordered double perovskites (DP), attract high interest due to their
potential application in a wide range of devices, such as electrically
tunable microwave devices,1 multiferroic solar cells,2 magneto-optic
devices3 and spin-filter devices.4 In this materials family, the cations
are ordered in either a layered, columnar or rock salt structure. As a
result, these materials exhibit a large set of exotic magnetic and
ferroelectric properties that are absent in the parent compounds,
including improper ferroelectricity (for example, in PbSrTi2O6),

5

strongly enhanced dielectric constant (for example, in BaSrTi2O6),
6

ferromagnetic semiconducting behavior (for example, in
La2NiMnO6),

7 multiferroicity (for example, in Bi2NiMnO6)
8 and

room temperature colossal magnetoresistance (for example, in Sr2Fe-
MoO6).

9 In addition, there are many experimentally unexplored
bi-component perovskites that are suggested to have fascinating
properties. Examples are hybrid improper ferroelectric LaYGa2O6,

10

low-band-gap Sr2AlVO6,
11 half-metallic ferromagnet Sr2TiCrO6

12 and
half-metallic antiferromagnet La2VCuO6.

13 However, to achieve these
exciting functionalities, the materials should have a high degree of
cation ordering. Unfortunately, the fabrication of ultrashort period
superlattices is extremely difficult and a slow growth rate is required,
limiting industrial interest. Therefore, to enable the fabrication of bi-

component perovskite thin films with perfect ordering and thus
realizing their huge potential, one has to look for routes that allow
natural formation of these superlattices, that is, fabrication of DP
thin films.
Considering DP B-site cation ordering in bulk, the biggest challenge

is the similarity of the ionic formal valence (FV) and ionic radius (rB)
of the B-site cations. Hence, to achieve spontaneous B-site rock salt
ordering in bulk, a distinct difference in FV and rB is necessary.14,15

Similar constraints apply for thin films, but, in addition, thin film
growth is complicated by the presence of multiple multivalent ions in
DPs.16,17 These constraints limit the group of ordered DP thin films
significantly, and therefore, to date, only a small number of ordered
DP thin films has been fabricated. On the other hand, thin film
growth offers an additional set of growth parameters to play with,
including anisotropic strain. Optimizing these growth parameters has
already shown to enable the growth of spontaneously ordered DP thin
film materials that do not exist in bulk.18–22

Promisingly, for example, recent studies have shown that control of
thin film growth kinetics can lead to spontaneous ordering even if the
difference in FV and rB is negligible.

18–22 Here, cation ordering can be
stimulated by using non-equilibrium growth settings during pulsed
laser deposition, that is, a low oxygen pressure (~10− 4mbar), high
substrate temperature (41000 °C) and subsequent quenching to room
temperature. It was proposed that ordering may occur under these
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conditions as the FV difference between B and B’ is enhanced in the
surface growth front.22 However, the exact understanding of why B-
site ordering takes place was not made clear. Also, the complexity of
the growth and reproducibility of the growth remain challenging. In
addition, the required high substrate temperature and low pressure
during growth are not suitable for many DP compositions, including
Sr2FeMoO6, La2CoMnO6 and the highly demanding multiferroic
Pb- or Bi-containing DPs.8,23–25

Therefore, understanding of what leads to spontaneous B-site
ordering in thin films and developing new growth processes that
produce this ordering reliably are now required. Here, we start with
what is known for bulk A-site ordering, where the presence of two
differently sized spaces at the A-sites, as a result of a+a+a+ BO6

octahedral tilting (Glazer’s notation26), produces spontaneous A-site
cation ordering in the highly complex A3A’B4O12 system.27 Transfer-
ring this route to the B-sites in A2BB’O6 thin films would require the
formation of different B-site cages (in shape and volume) in an
ordered arrangement. Analogously to the scenario described for the
A-sites, we propose here that two different spaces at the B-site can be
created in a rock salt ordered manner when the film material contains
anti-phase octahedral rotations in combination with induced ‘in-plane’
strain, which is controlled by the orientation of the substrate and the
substrate-film misfit. We investigate experimentally whether this
approach can enhance or even induce spontaneous B-site ordering.
To understand how two different B-sites can be created, we first

discuss the effect of ‘in-plane’ strain on non-distorted BO6 for different
substrate orientations (see Figures 1a and b). First of all, for the most
conventionally used orientation, the (001), a perovskite under
compressive in-plane strain has four reduced in-plane B-O bonds
(dB-O) and two elongated out-of-plane dB-O (Figure 1a). On the other

hand, for the rarely studied (111)-oriented perovskites under
compressive strain, all six dB-O elongate to preserve the unit cell
volume. (Figure 1b)
Secondly, we include octahedral rotations, as they are present in

the majority of DP-oxides.28 The rotations of the octahedra result in a
zig-zag pattern of the -O-B-O-B- chain, as depicted in Figures 1c and
d. For (001)-oriented films, the rotation axes are either parallel or
perpendicular to the substrate surface (Figure 1c). Therefore, although
the octahedra are tilted, the effect of strain is expected to be the same
on all tilted BO6 octahedra, independent of the type of rotation
(in-phase or anti-phase). For (111)-oriented films, one set of BO6

octahedra tilts towards the substrate surface plane (the in-plane

direction), while the nearest neighboring set of BO6 octahedra tilts
toward the substrate surface normal (the out-of-plane direction) as
illustrated in Figure 1d. Hence, the effect of in-plane strain on the two
sets of octahedra is different, resulting in B-site cages of different
orientation and volume. The difference between the octahedra
depends on the magnitude of the strain and the magnitude of the
octahedral tilting. A typical volume difference between the two
octahedra would be between 0.3–3%. Both octahedra are tilted
similar with respect to the out-of-plane direction. Therefore, applying
in-plane strain on these octahedra results in a shape and volume
change that is the same for both octahedra. Note that cation
displacements are not taken into account. Since the two different
B-site cages are nearest neighbors, they are then arranged in a rock salt
fashion, which is the most frequently found arrangement of B cations
in ordered A2BB’O6.

15 Having small differences between B and B’,
such as in valence state, ionic radius and electronegativity, is expected
to stimulate an ordered occupation of the B-site cages instead of
forming a random arrangement.
To test the above hypothesis about the formation of two different

B-site cages stimulating B-site cation ordering, we have grown the
ferromagnetic insulator La2CoMnO6 (monoclinic space group P21/n,
amonoclinic= 0.553 nm, bmonoclinic= 0.549 nm, cmonoclinic= 0.778 nm
and βmonoclinic= 89.95° giving apc= 0.389 nm, where pc denotes
pseudocubic) on various (001)- and (111)-oriented substrates with
different strain states (see Figure 2a).29

La2CoMnO6 is used here as a model system, since it offers some
significant advantages. First of all, bulk La2CoMnO6 has an a−a−c+

tilting pattern (Glazer’s notation26). Having rotations along all three
orthogonal axis of which two rotations are anti-phase, a clear
difference in B-site space as a result of strain can be expected.
(Note that the volumes of MnO6 and CoO6 in bulk ordered
La2CoMnO6 have a difference of ~ 13%.29) Secondly, it is a challenge
to achieve full Co/Mn ordering as both ordered and disordered
La2CoMnO6 exist in bulk. Ordered La2CoMnO6 can occur as a
result of internal charge transfer from Mn to Co, giving Mn4+ and
Co2+ (∆FV= 2 and ∆rB= 11.5 pm).29–31 However, disordered
La2CoMnO6 contains Co

3+/Mn3+ (∆FV= 0 and ∆rB= 3.5 pm) and is
energetically (0.2 eV) slightly more favorable than Co2+/Mn4+.29,30,32

As a result, a very high degree of Co/Mn ordering in thin films has
not been achieved to date. Using the formation of two different
B-site spaces as an extra driving force to create Co/Mn ordering, we
expect that highly ordered La2CoMnO6 films can be achieved on
(111)-oriented substrates. Since this driving force is absent for films on
(001)-oriented substrates, a low degree of cation ordering is expected
in these cases.
To date, achieving cation ordering in La2CoMnO6 in both bulk and

thin films requires high growth temperatures (for example,41100 °C
in bulk) as well as high oxygen pressures.33–35 As a result, the
non-equilibrium DP thin film growth method, using low oxygen

Figure 1 The effect of compressive in-plane strain on the BO6 octahedra of

a cubic ABO3 structure on substrates with (001)-orientation (a) and (111)-

orientation (b), where the green lines indicate a reduced dB-O and the red

lines indicate an elongated dB-O compared to the non-strained BO6.

Schematic drawings of the oxygen octahedra in perovskite films that contain

anti-phase rotations after applying in-plane compressive strain are shown in

(c and d); (c) for (001)-oriented films and (d) for (111)-oriented films. The

oxygen ions are at the corners of the octahedra and the B cations are at the

center of the octahedra. The A-site cations are not depicted but would lie in

the open spaces between the octahedra. The cubes depict the pseudocubic

ABO3 unit cell. The two different octahedra formed in a film on the (111)-

oriented substrate are depicted in blue and red. The zig-zag pattern of the

-O-B-O-B- chain is highlighted in black.
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pressures, cannot be used for La2CoMnO6. In La2CoMnO6, low
oxygen pressures lead to oxygen vacancies, which are associated with
cation disorder.30 Additionally, the magnetic Curie temperature (TC)
and the saturation magnetization (Ms) of La2CoMnO6 strongly depend
on the cation ordering, making the magnetic behavior a good
indicator for the presence of cation ordering.17,36 Bulk ordered
La2Co

2+Mn4+O6 has a ferromagnetic-to-paramagnetic transition
temperature (TC) of ~ 230 K, while a TC of ~ 80–150 K is often
related to the disordered La2Co

3+Mn3+O6 phase.30,36 Furthermore,
fully ordered La2CoMnO6 has a theoretical spin-only Ms of
6 μB/formula unit (f.u.).30 The introduction of disorder at the B-site
as a result of antisites or anti-phase boundaries leads to antiferro-
magnetic (AFM) Co2+-O-Co2+ and Mn4+-O-Mn4+ superexchange
interactions, lowering both Ms and TC.

30 Moreover, the TC and Ms

decrease by the introduction of oxygen vacancies arising from the
formation of Mn3+ which lowers the degree of ordering.17,30,37

To study the influence of both the magnitude of strain and the
substrate orientation, thin La2CoMnO6 films were grown by pulsed
laser deposition on three different perovskite-oxide substrates
(LaAlO3, (La,Sr)(Al,Ta)O3 (LSAT) and SrTiO3) with two different
orientations, either (001) or (111). The mismatch between substrate
and ordered La2CoMnO6 is depicted in Figure 2a. To avoid any
influence of the growth parameters on cation ordering, all films
were grown under the same growth conditions. The growth settings
were optimized for films on (111)-oriented SrTiO3 to achieve
coherently-grown, single-phase La2CoMnO6. To minimize the effect
of spontaneous bulk ordering, we used a growth temperature which
was 50–100 °C lower than in previous investigations of La2CoMnO6

film growth.17,31,33,34,36,38–40 The films were deposited in the thickness
range of 20–60 nm, which is sufficiently low to allow only minimal
in-plane relaxations on the SrTiO3 and LSAT substrates, but not
too low to result in a TC reduction.41–43

METHODS

Target fabrication
A ceramic La2CoMnO6 target was synthesized by conventional solid-state
reaction. A stoichiometric mixture of Co3O4 (Alfa Aesar, Lancashire, UK),
MnO2 (Alfa Aesar) and La2O3 (Sigma Aldrich, Dorset, UK) was ground and
subsequently calcined at 900 °C for 10 h under oxygen flow. After cool down
the mixture was ground and pressed into a 1 inch pellet. The pellet was sintered
at 1200 °C for 17 h under oxygen flow. Single-phase La(Co,Mn)O3 was
confirmed by powder X-ray diffraction (XRD, Bruker D8 theta/theta diffract-
ometer, Cu Kα radiation (Bruker AXS GmbH, Karlsruhe, Germay)).

Thin film fabrication
As substrates, we used TiO2 terminated (001)-and (111)-oriented SrTiO3

(a= 0.3905 nm),44,45 thermally treated (001)-and (111)-oriented LSAT
(a= 0.387 nm)46 and thermally treated (111)-oriented LaAlO3

(apc= 0.382 nm)47 single-crystal substrates (Crystec GmbH, Berlin, Germany).
The films were grown by pulsed laser deposition at a substrate temperature of
710 °C with a repetition rate of 1 Hz and a fluence of 1.5 J cm− 2. To ensure
oxygen stoichiometry, the films were grown at 0.15 mbar flowing O2, annealed
in 500 mbar O2 at 700 °C for 30 min directly after deposition and slowly cooled
afterwards (−5 °C min− 1 to 400 °C followed by − 10 °C min− 1 to room
temperature) while maintaining 500 mbar O2 background pressure.

Characterization of structure and physical properties
Structural analysis of the films was done by XRD (high-resolution Panalytical
Empyrean vertical diffractometer, Cu Kα radiation, Panalytical, Kassel,
Germany). Magnetic property measurements were performed using a super-
conducting quantum interference device (SQUID magnetometer, Quantum
Design, San Diego, CA, USA), with a temperature range of 5–300 K and up
to 4 T.

Scanning transmission electron microscopy
Samples were prepared for scanning transmission electron microscopy (STEM)
investigations by a focused ion beam lift-out procedure using a FEI Nova

Figure 2 (a) The pseudocubic lattice parameters and mismatch of various perovskite substrates and La2CoMnO6. (b) XRD out-of-plane diffraction patterns

around the (111)pc of La2CoMnO6 films grown on the various substrates along the (111). The La2CoMnO6 peak is marked by (*), the sharp intense peaks are

from the substrate. (c and d) Reciprocal space maps of La2CoMnO6 grown on LSAT (111) and (001), respectively.
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Nanolab 200 DualBeam instrument (FEI, Hillsboro, OR, USA). Final polishing
of the sections was performed using a 5 kV Ga beam. In some cases, additional
final polishing was performed using 500 V Ar+ ions in a Gatan PIPS (Gatan
Inc., Pleasanton, CA, USA). The STEM measurements were performed using
two instruments. Most of the data was recorded using a Nion UltraSTEM 100
(NION, Kirkland, WA, USA) operated at 100 kV accelerating voltage with a
probe semiconvergence angle of 30 mrad, and equipped with a Gatan Enfina
Spectrometer with an acceptance semiangle of 32 mrad. High-angle annular
dark field images were recorded with a detector with an effective inner angle of
~ 78 mrad. annular bright field (ABF) images were recorded with an angular
range on the detector of 16–30 mrad, and simultaneously recorded low-angle
annular dark field images were recorded with an angular range of 33–180 mrad.
Additional data was recorded using a JEOL ARM200CF (JEOL Ltd., Akishima,
Japan) operated at 200 kV accelerating voltage and a probe convergence
semiangle of 29 mrad, and equipped with a Gatan GIF Quantum ER with
DualEELS using a 2.5 mm entrance aperture and 2 cm camera length to give an
acceptance semiangle of 36 mrad. High-quality images were created by repeated
scanning of the same area using a relatively short pixel dwell time of a few μs,
followed by subsequent alignment and summation, either using a simple rigid
registration technique using the SDSD plugin for Digital Micrograph48

(Gatan Inc.) or using a non-rigid registration technique to also remove non-
linear scan-distortion and higher frequency electronic interference.49 Determi-
nation of atomic column positions was then performed using the Image
Analysis routine for Digital Micrograph (kindly provided by Dr Bernhard
Schaffer, Gatan GmbH), followed by further analysis using conventional
spreadsheets. Electron energy loss (EEL) spectrum images were processed by
firstly removing noise using principal component analysis,50 followed by
elemental mapping using Gatan Digital Micrograph. For the determination of
oxidation states, standard spectra were acquired from samples of crushed

powders of CoO (Co2+), LiCoO2 (Co3+), Mn2O3 (Mn3+) and MnO2 (Mn4+)
(Sigma Aldrich Co.) under identical optical conditions to those used for the
acquisition of the data from the La2CoMnO6 films, with both core-loss and
low-loss data sets acquired from each area. As before, principal component
analysis was used to reduce noise, and then the edge of interest was extracted
by the fitting of an appropriate background before the edge. These were
then transformed to a single-scattering distribution using Fourier-log
deconvolution51 to remove the effects of thickness and multiple scattering.
A similar procedure was performed on real Mn and Co L2,3 edges in the sample
(where low-loss data were available for the deconvolution). Care needed to be
taken with the extraction of the Co edges from the La2CoMnO6 samples,
since the weak Mn L1 edge lies just before the Co L2,3 edge and the perturbation
from this needed subtraction after background fitting. This then allowed the
direct comparison of the real edges to those from standards.

RESULTS AND DISCUSSION

Structural analysis of the films was done by XRD. Figure 2b shows
the out-of-plane diffraction patterns of the films grown on the
(111)-oriented substrates (reflections are indexed based on pseudo-
cubic symmetry). The films were grown fully epitaxial and no
impurity phases were observed. Thickness fringes for films on
SrTiO3 and LSAT were clearly visible indicating high film quality
with well-defined interfaces. No superlattice peaks as a result of cation
ordering were observed along [111]. However, taking only cation
ordering into account and no A-site displacement, these peaks are
expected to be within the noise level due to the similar scattering
factors of Co and Mn.18,52

Figure 3 The normalized M(T) data of the La2CoMnO6 films on (a) the (111)-oriented substrates and (b) the (001)-oriented substrates. The arrow in a marks

the TC of La2CoMnO6 on LSAT (111) at 211 K. The inset of a shows normalized M(T) and χ(T) of La2CoMnO6 on LSAT (111) near TC as well as its

corresponding Curie–Weiss fit. The in-plane M(H) hysteresis curves of the corresponding films at 5 K are shown in c and d. A linear paramagnetic background

of the SrTiO3 substrate was subtracted.
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Asymmetric X-ray reciprocal space maps were taken to verify the
strain state of the films (see Figures 2c and d for La2CoMnO6 on LSAT
(111) and (001)). La2CoMnO6 on both SrTiO3 and LSAT substrates
appeared to be fully in-plane strained, independent of the orientation.
On the other hand, the misfit between La2CoMnO6 and LaAlO3 was
too large (−2.7 %) to accommodate the stress in the film and, as a
result, the film was fully relaxed. This result is consistent with
the absence of thickness fringes in the out-of-plane diffraction pattern
(see Figure 2b).
To verify the insulating state of the La2CoMnO6 films, four-point

transport measurements for all samples were performed between
10–300 K. All samples showed insulating behavior with a very high
resistivity (ρ) (~1012Ω-cm) at room temperature, independent of
substrate and orientation.
To gain insight into the presence of cation ordering, we measured

the magnetization (M) versus temperature (T) and applied magnetic
field (H). Figures 3a and b show the in-plane normalized field
cooled M(T) (H= 200 Oe) for the (001) and (111)-oriented films,
respectively. The TC values were determined as the minima of dM/dT
(see Table 1). The corresponding in-plane M(H) loops at 5 K along the
110
� �

direction are shown in Figures 3c and d. To enhance the clarity
of the M(H) data, we subtracted the paramagnetic background that
was only present for the films on SrTiO3. An overview of the main
outcomes is shown in Table 1.
Taking a closer look at the M(T) data, a well-defined magnetic

transition was found ~ 200 K for La2CoMnO6 on (111)-oriented
substrates. On the (001)-oriented substrates, a minimum in the
dM/dT was also present, but at much lower temperatures, around
120 K. Moreover, a clear tail is present in the M(T) curve above TC,
which is likely the result of a large proportion of Co–O–Co and
Mn–O–Mn bonds leading to AFM/paramagnetic superexchange
interaction.35,53,54 In addition, M(H) shows a slight biloop behavior
(Figure 3d) with a much lower MS. This suggests the presence of
disordered magnetic domains with a variance of magnetic coupling
due to cation disordering.
The clear difference in TC found between the (001) and the

(111)-oriented films, ~ 120 K and ~ 200 K, respectively, indicates that
the substrate orientation strongly influences the magnetic properties of
the film and likely the B-site cation arrangement. In previous studies,
the high TC was ascribed to Co/Mn ordering, while the low TC was
believed to result from cation disorder, with the presence of Mn3+ and
Co3+ and/or oxygen vacancies playing an important role.25,30,37

A reduction in Co/Mn ordering in our (001)-oriented film is in full
agreement with the hypothesis as the creation of two different B-site
spaces would be absent for these films.
To understand the M(T) behavior in more detail, we fitted the

paramagnetic susceptibility (χ) of La2CoMnO6 on LSAT (111), the
highest TC sample, to a Curie–Weiss Law in the temperature range
of 216–250 K (inset in Figure 3a, shown by the solid black line).
A paramagnetic Curie temperature (θ) of 213± 0.3 K was found.

Moreover, we used the expression M~ (TC−T)
β, where β is the

critical exponent, to fit the M(T) curves for comparison with
simple mean field theory for spontaneous magnetization near TC
(inset Figure 3a, blue solid line). β and TC were found to be
0.34± 0.01 and 211± 1 K, respectively. The values found for TC and
θ are similar indicating ferromagnetic behavior of La2CoMnO6 on
LSAT (111). The TC is slightly lower than that observed in bulk
La2CoMnO6. However, biaxial strain and a relatively low film
thickness may reduce TC as they can affect the magnetic ordering,
the B-O bond length and/or B-O-B’ bond angle.55,56 The value found
for β was 0.34 which is close to a three dimensional isotropic
Heisenberg ferromagnet. Similar behavior has been suggested for
ordered La2NiMnO6.

35 The observation of high-quality ferromagnetic
behavior indicates that the film has a very high degree of Co/Mn
ordering.
While M(T) data show clear differences between (001)- and

(111)-oriented films, the M(H) loops show clear differences in Ms

and coercive field (Hc) between La2CoMnO6 on LSAT (111) and the
other films (Figures 3c and d). The La2CoMnO6 films on (001)
and (111) SrTiO3, (001) LSAT and (111) LaAlO3 showed a Ms of
~ 3.5–4 μB/f.u. with a Hc of 9–13 kOe. TheseMs values are much lower
than for ordered La2CoMnO6, suggesting the presence of Co/Mn
disorder. However, Ms does not give any insight on the type of
disorder. On the other hand, since the TC’ values differ significantly
between the (001) and (111)-oriented films, the Co/Mn (dis)order is
likely to be different. The presence of disorder is also in agreement
with the enhancement in Hc compared to (partially) ordered
La2CoMnO6 reported in previous studies (5–7 kOe).36,39 The enhance-
ment in Hc can be explained by the presence of anti-phase domains.
La2CoMnO6 on LSAT (111) showed a much higher Ms compared

to all other films studied, Ms~5.8 μB/f.u., which is close to the
theoretical maximum value of 6 μB/f.u. for fully ordered La2CoMnO6,
as well as a relatively low Hc ~6 kOe, indicating a high degree of
Co/Mn order. In comparison to previously reported ordered
La2CoMnO6 films, our films on LSAT (111) showed a clear saturation
in magnetization above 25 kOe. In previous studies, saturation was not
even observed up to 40 kOe, probably due to the presence of AFM
interactions.25,36,39 As the absence in saturation was not taken into
account for determining the Ms in those studies, the actual Ms is likely
to be lower than reported, and therefore also the Co/Mn ordering. In
addition, from the M(H) loop, there is no evidence for the presence of
other magnetic domains resulting from B-site cation disordering or
the presence of antisite defects.54 As our films on LSAT (111) show a
clear saturation in the magnetization with a Ms of ~ 5.8 μB/f.u. in
combination with a high TC and a well-defined M(H) loop, a high
degree of Co/Mn ordering has been achieved in these films.
To get a better understanding of the La2CoMnO6 structure,

chemical ordering and the resulting magnetic behavior, we compared
the films grown on SrTiO3 (111) and LSAT (111) using analytical
STEM. Both films showed very good epitaxy and a well-defined
interface with the substrate as shown in the high-angle annular dark
field image La2CoMnO6 on LSAT and the low angle annular dark field
image for La2CoMnO6 on SrTiO3 (Figures 4a and e), which is in
agreement with our XRD results. Moreover, the characteristic partial
Al-Ta ordering in the LSAT substrate is clearly visible.57 Please note
that these images have an exceptionally high signal to noise level
without global or local distortions due to the acquisition of a sequence
of short exposure scans followed by the application of rigid and
non-rigid registration procedures, as described in detail in the
‘Experimental section’. Therefore these data are suited to use for
quantitative analysis of atomic positions.

Table 1 Overview of the magnetic results (TC, Ms and Hc) of

La2CoMnO6 on the various substrates

Orientation Substrate Pseudocubic misfit (%) TC (K) Ms (μB/f.u.) Hc (kOe)

(111) LaAlO3 −2.7 193±4 3.9 12

LSAT −0.5 211±1 5.8 6

SrTiO3 +0.4 192±4 3.5 10

(001) LSAT −0.5 125±8 4.0 13

SrTiO3 +0.4 113±4 3.9 9
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To determine the type of ordering, spatially resolved electron energy
loss spectroscopy spectrum imaging was undertaken on both samples.
A clear difference in B-site ordering between the two films was
present. For the film grown on (111) LSAT, the superimposed electron
energy loss spectroscopy spectrum imaging maps of Mn and Co
showed a clear rock salt ordering pattern, indicating that the bulk of
the film has a high degree of long-range rock salt ordering (Figure 4b).
Furthermore, the high degree of cation ordering is in agreement with
the extracted electron energy loss spectroscopy (EELS) spectra from
this region, which match well to standard spectra for Co2+ and Mn4+

(Figures 4c and d). This is consistent with previous measurements that
suggest that atomic ordering is associated with strong charge
ordering.30 For the film grown on (111) SrTiO3, the ordering is less
clearly visible (Figure 4f). However, some columns still clearly have
more Co or Mn, and the EEL spectra still match well to standard
spectra for Co2+ and Mn4+ (Figures 4g and h), suggesting that a high
degree of local ordering of Mn and Co is still present in the film on
SrTiO3 (111), even if cation ordering does not persist over length
scales longer than several nanometers, suggesting a nanoscale ordering
domain structure. Multiple nanosized anti-phase domains have been
inferred in other DPs as well.58 Moreover, a short-range ordered
structure would also clarify the significantly reduced Ms as a result of
the AFM Co2+-Co2+ and Mn4+-Mn4+ interactions at the anti-phase
domains boundaries. However, since the degree of local cation order
remained very high, only a minor reduction of TC is present.59

Our hypothesis states that the presence of anti-phase octahedral
rotations would be required to enhance cation ordering. For both
films, the oxygen maps in the bulk of the film show a clear zig-zag
pattern along the 110

� �

pc
direction consistent with the expected

octahedral tilt pattern, as shown in Figure 5a for La2CoMnO6 on
LSAT. This pattern is also seen in ABF STEM images of the interface
for La2CoMnO6 on SrTiO3 (111) (Figure 5b). Quantification of
the ABF STEM images of the La2CoMnO6 film on SrTiO3 show that
anti-phase rotation along the [100]pc and [010]pc immediately starts at
the interface and increases in strength over a few (111)pc planes until it
reaches a plateau with a total tilt angle of ± 8° (Figure 5c).
See Supplementary Information for simulations that confirm this
intuitive interpretation of the ABF images. (See supporting informa-
tion for details regarding the interpretation of the ABF images.) The
presence of octahedral tilting in both films is consistent with the
presence of cation ordering.
To understand the absence of long-range ordering in La2CoMnO6

on SrTiO3 (111), we also investigated the pseudocubic layer spacing by
doing quantitative measurements of the spacing between the A-site
layers (d) along the out-of-plane direction, as the d-spacing is linked to
the size and shape of the B-site cage.
In the SrTiO3 substrate, A-site layers are spaced with the expected

d-spacing of ~ 2.25 Å. In the La2CoMnO6 film on SrTiO3, these
spacings develop a pattern of alternating short and long d-spacings, as
shown in Figure 5e, where the alternating spacing increases over about
20 (111)pc layers to values of around 2.32 and 2.18 Å. As this
modulation of A-site d-spacings correlates very well with the trend
in tilting pattern, it is clear that d-spacing and octahedral tilting are
coupled. This is in agreement with the results for bulk ordered
La2CoMnO6, where a modulation of alternate spacings of (101)

monoclinic planes of 2.37 and 2.14 Å is present.29 Comparing the
d-spacings with the bulk values, it is clear that the observed

Figure 4 STEM of the structure and chemistry of La2CoMnO6 films on (111)-oriented LSAT and (111)-oriented SrTiO3: (a) high-angle annular dark field

STEM image of 10 nm2 of the substrate-film interface for the La2CoMnO6 film on LSAT, with the approximate interface position delineated, the partial Al-Ta

ordering in the LSAT is easily seen; (b) superimposed EELS maps of Mn (green) and Co (blue) showing a high degree of ordering for the La2CoMnO6 film on

LSAT; (c) detailed EEL spectrum around the Mn-L2,3 edge for the bulk of the La2CoMnO6 film on LSAT compared to standards; (d) detailed EEL spectrum

around the Co-L2,3 edge from the same area as (c) compared to standards; (e) low-angle annular dark field-STEM image of 10 nm2 of La2CoMnO6 on SrTiO3,

with the approximate interface position delineated; (f) superimposed Mn (green) and Co (blue) EELS maps of an area within the centre of the film on SrTiO3

showing some columns richer in one element, but no clear evidence of long-range Co-Mn ordering; (g) detailed EEL spectrum around the Mn-L2,3 edge for

the bulk of the La2CoMnO6 film on SrTiO3 compared to standards; (h) detailed EEL spectrum around the Co-L2,3 edge from the same area as (g) compared

to standards.
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modulation in the film on SrTiO3 (111) is approaching the bulk
values, but did not reach the full modulation after 20 (111)pc layers.
A similar effect in d-spacings is seen for La2CoMnO6 on LSAT (111)

(Figure 5d). In the area analyzed, significant Al-Ta ordering
was present in the LSAT substrate, resulting in a period doubling of
(111)pc planes in the substrate. Therefore, for ease of comparison, the
spacing of (111)pc planes in LSAT is calculated by halving the actual
plane spacing. This averaged spacing is very uniform in LSAT with a
constant value of 2.23 Å. In La2CoMnO6, a bimodal distribution of
(111)pc layer spacings builds up immediately at the interface, similar as
for the film on SrTiO3. However, the bimodality of layer spacings for
La2CoMnO6 on LSAT (111) is much stronger approaching bulk values
of 2.14 and 2.37 Å at ~ 20 layers away from the interface.
Our data clearly show that the d-spacing modulation in

La2CoMnO6 on LSAT is larger than on SrTiO3. This is in agreement
with the higher degree of ordering observed on LSAT. The small
compressive strain sets up a pattern of co-operative octahedral tilting
and A-site layer spacing modulation resulting in a large difference in
the size of the B-site cages within the octahedra in each alternating
layer along the growth direction. The pronounced difference in B-site
cages then has the simple consequence that the smaller Mn4+ ions are
attracted to the smaller octahedra and the larger Co2+ ions to the
larger ones, giving the observed ordering pattern and resulting
properties.
The minor tensile strain of SrTiO3 appears to slightly suppress the

out-of-plane d-spacing modulation. This suppression may be due to

the change in orientation of the monoclinic La2CoMnO6 unit
cell (amonoclinic= 0.553 nm, bmonoclinic= 0.549 nm) with respect to
the out-of-plane direction when moving from compressive (on LSAT)
to tensile strain (on SrTiO3). The growth of La2CoMnO6 on (111)
could proceed with a number of different orientations of the
monoclinic unit cell with respect to the substrate. Firstly, any of the
directions in the monoclinic cell equivalent to [111]cubic could appear
as the out-of-plane direction. By analyzing the lattice mismatch
between the three directions equivalent to o1104cubic directions in
the interface plane, it is possible to find the orientation that gives the
lowest mismatch and therefore lowest strain (the same principle was
used previously for predicting domain assemblages, for example by
MacLaren et al.).60 It is found that of the four distinct o1114cubic

directions, [201]monoclinic gives the smallest interface misfit with
− 0.61%, − 0.61 % and − 0.36% misfit along the three in-plane

o1104cubic directions for the film grown on LSAT. There are then
three rotational variants of this orientation, with the [010]monoclinic

direction with the low − 0.36% misfit along any of the three
crystallographically equivalent o1104cubic in the substrate at the
interface. Thus, a domain structure of three crystallographically
equivalent variants would be expected with the [010]monoclinic

direction in-plane in all cases for films grown on LSAT. For films
grown on SrTiO3, the misfit is lower and the strain is lowest for [021]
and 021

� �

orientations of the film normal (0.27, − 0.14 and 0.34% for
the three in-plane directions in both cases). The lack of a strong
constraint from SrTiO3 would therefore allow the nucleation of a

Figure 5 (a) Superimposed EELS maps of oxygen (red), Mn (green) and Co (blue) of La2CoMnO6 on LSAT from the same area as Figure 4b showing a clear

zig-zag pattern of the oxygen positions, meaning strong correlated octahedral tilting; (b) ABF image (5 nm2) of La2CoMnO6 on SrTiO3 at the interface showing

a clear zig-zag of the oxygen positions, which is consistent with octahedral tilting; (c) plot of tilt angle for the octahedral tilting going from the SrTiO3

substrate into La2CoMnO6, the dotted line is a guide-to-the-eye; (d) plot of (111)pc spacings between A-site layers going from the LSAT substrate into the

La2CoMnO6 film, the dotted line is a guide-to-the-eye; and (e) plot of (111)pc spacings between A-site layers going from the SrTiO3 substrate into the

La2CoMnO6 film, the dotted line is a guide-to-the-eye.
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more complex domain structure, which may also reduce the driving
force for strong elemental and magnetic ordering. This could also
explain the difference in d-spacing modulation between the films on
LSAT (111) and SrTiO3 (111) (Figures 5d and e).
Growth of La2CoMnO6 on both LSAT and SrTiO3 substrates

produced a very small concentration of precipitates at the substrate/
film interface (Figure 6). The precipitates on SrTiO3 are, on average,
slightly larger (~10 nm, Figure 6a) compared to those on LSAT
(~2–5 nm, Figure 6b). Nevertheless, the precipitates rarely grow large
or persist for any significant thickness of the film. On the basis of
a combination of EELS and atomic resolution high-angle annular
dark-field STEM imaging, the precipitates are most likely to be rock
salt structured CoO, with the [111]CoO directed out-of-plane

(Figures 6b and c). As this phase was not observed by XRD, the
volume fraction is very small. The particles being CoO agrees with the
observed impurity phase seen in XRD by Egoavil et al.39. The presence
of CoO is consistent with the fact that the first few layers of
La2CoMnO6 were Mn-rich and Co-poor with Mn:Co ratios up to
70%:30% as determined by EELS quantification. However, since
La2Co1− xMn1+xO6 also has a ferromagnetic TC ~210 K, no effect
on the M(T) has been observed.61,62 The deviation in stoichiometry

also means that the ideal rock salt ordering is disturbed in those first
few layers near the interface (Figure 6d), which is consistent with
previous studies.39 The formation of CoO and La2Mn1+xCo1− xO6 can
be explained by the fact that the in-plane strained lattice sites are too
small for Co2+ in the first few layers, until the octahedral tilting and
A-site spacing modulation has built up to the bulk-like values, as
shown in Figures 5d and e. This also explains why the ideal
ordered La2CoMnO6 structure forms readily, as shown in Figure 6d.
Furthermore, the ordered La2CoMnO6 grows over the top of the CoO
defects leaving the bulk of the film as the ideal rock salt ordered DP
structure.
With a good understanding of the Co/Mn ordering of La2CoMnO6

on SrTiO3 (111) and LSAT (111), we are now able to infer the type of
(dis)order in the films on LaAlO3 (111), SrTiO3 (001) and LSAT
(001). First of all, since the magnetic behavior of La2CoMnO6

on LaAlO3 (111) and SrTiO3 (111) is comparable, a similar type of
Co-Mn ordering can be expected, that is, short-range ordering with
nanometer sized anti-phase domains. The absence of long-range
cation ordering on LaAlO3 can be explained by the absence of
induced in-plane strain as a result of a too large in-plane mismatch.
As a consequence, the strain-induced effect required to promote the
formation of two different B-site cages was absent. However, one may
still expect the formation of the out-of-plane A-site d-spacing
modulation as for the film on SrTiO3, which arises as a natural result
of the octahedral tilting due to growing along the [111] direction.
A drastic change in the magnetic behavior of La2CoMnO6 was

found by changing the orientation of the substrate from (111) to
(001). For the (001)-oriented films, both a low TC and a low Ms with
large HC were found, as well as a clear tail in the M(T) was present
indicating the presence of AFM interactions. This strongly suggests a
highly disordered or randomly ordered cation structure on the B-site.
In addition, the reduced TC may indicate the presence of oxygen
vacancies.30 Note that the formation of oxygen vacancies can depend
on the film growth direction, even though the film growth conditions
are the same.63 Recently, calculations have shown that oxygen
vacancies are more likely to form in La2CoMnO6 when Co and Mn
are mainly in the 3+ oxidation state,63 which would be expected for a
random distribution of Co and Mn ions on the B-sites. Moreover, the
presence of oxygen vacancies would also stimulate an increase in the
formation of Mn3+, that is, increasing the degree of Co/Mn disorder.30

Therefore, the films grown on the (001) substrates are likely to be
highly disordered and oxygen vacancy rich.
Finally, with the understanding of the differences in nature of cation

(dis)order for the various samples, we now focus on why these
different types of ordering occur. Therefore, we return to the
hypothesis that states that two different octahedra, that is, two
different B-site cages, can be formed when growing distorted
perovskites on (111)-oriented substrates and thereby driving cation
ordering. The hypothesis is in full agreement with our results as a
significant increase in Co/Mn ordering in films on (111)-oriented
substrates was observed compared to the films on (001)-oriented
substrates. For the (001)-oriented films cation ordering was not
stimulated by the substrate orientation. Since in this study, cation
ordering was not stimulated by the growth conditions, no cation
ordering was detected in the (001)-oriented La2CoMnO6 films.

CONCLUSION

To conclude, spontaneous B-site rock salt cation ordering can be
stimulated in DP thin films by coherent growth along the [111]
direction. This is because the combination of internal octahedral
rotations of the DP and the in-plane strain from the (111)-oriented

Figure 6 STEM imaging and electron energy loss spectroscopy spectrum

imaging of non-stoichiometry at the substrate-film interface: (a) high-angle

annular dark field-STEM image of Co-rich particles at the interface of

La2CoMnO6 on SrTiO3; (b) atomic resolution high-angle annular dark-field-

STEM image of the atomic structure of a particle in the La2CoMnO6 film on

LSAT; (c) superimposed Co-Mn EELS map of the particle in b, where Co is

blue and Mn is green; (d) superimposed Co-Mn EELS map, where Co is blue

and Mn is green, of an interface area on LSAT that was free of Co-rich

particles. The yellow dotted line indicates the interface between LSAT and

La2CoMnO6.
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substrate induces the formation of two differently sized B-site spaces
in a rock salt arrangement. A clear increase in Co/Mn rock salt
ordering was achieved by growing on (111)-oriented substrates,
including on SrTiO3 and LSAT. In addition, we have shown that
cation ordering is strongly enhanced in La2CoMnO6 under a minor
in-plane compressive strain when grown on a suitable (111)-oriented
substrate, resulting in long-range Co/Mn ordered films with a Ms of
5.8 μB/f.u. Since the growth on (111)-oriented substrates can stimulate
cation ordering and the driving force is insensitive to growth
conditions, our work opens up the possibility of the realization of a
whole range of new, high-quality functional DP thin films for a range
of applications such as magneto-optic, spin-filter and magnetoelectric
devices.
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