000840190 001__ 840190
000840190 005__ 20210129231754.0
000840190 0247_ $$2doi$$a10.1093/cercor/bhx179
000840190 0247_ $$2ISSN$$a1047-3211
000840190 0247_ $$2ISSN$$a1460-2199
000840190 0247_ $$2pmid$$apmid:28981612
000840190 0247_ $$2WOS$$aWOS:000443545600003
000840190 0247_ $$2altmetric$$aaltmetric:22248662
000840190 037__ $$aFZJ-2017-07745
000840190 082__ $$a610
000840190 1001_ $$0P:(DE-HGF)0$$aSchaefer, Alexander$$b0
000840190 245__ $$aLocal-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI
000840190 260__ $$aOxford$$bOxford Univ. Press$$c2017
000840190 3367_ $$2DRIVER$$aarticle
000840190 3367_ $$2DataCite$$aOutput Types/Journal article
000840190 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1530270672_14340
000840190 3367_ $$2BibTeX$$aARTICLE
000840190 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840190 3367_ $$00$$2EndNote$$aJournal Article
000840190 520__ $$aA central goal in systems neuroscience is the parcellation of the cerebral cortex into discrete neurobiological "atoms". Resting-state functional magnetic resonance imaging (rs-fMRI) offers the possibility of in vivo human cortical parcellation. Almost all previous parcellations relied on 1 of 2 approaches. The local gradient approach detects abrupt transitions in functional connectivity patterns. These transitions potentially reflect cortical areal boundaries defined by histology or visuotopic fMRI. By contrast, the global similarity approach clusters similar functional connectivity patterns regardless of spatial proximity, resulting in parcels with homogeneous (similar) rs-fMRI signals. Here, we propose a gradient-weighted Markov Random Field (gwMRF) model integrating local gradient and global similarity approaches. Using task-fMRI and rs-fMRI across diverse acquisition protocols, we found gwMRF parcellations to be more homogeneous than 4 previously published parcellations. Furthermore, gwMRF parcellations agreed with the boundaries of certain cortical areas defined using histology and visuotopic fMRI. Some parcels captured subareal (somatotopic and visuotopic) features that likely reflect distinct computational units within known cortical areas. These results suggest that gwMRF parcellations reveal neurobiologically meaningful features of brain organization and are potentially useful for future applications requiring dimensionality reduction of voxel-wise fMRI data. Multiresolution parcellations generated from 1489 participants are publicly available
000840190 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000840190 588__ $$aDataset connected to CrossRef
000840190 7001_ $$0P:(DE-HGF)0$$aKong, Ru$$b1
000840190 7001_ $$0P:(DE-HGF)0$$aGordon, Evan M.$$b2
000840190 7001_ $$0P:(DE-HGF)0$$aLaumann, Timothy O.$$b3
000840190 7001_ $$0P:(DE-HGF)0$$aZuo, Xi-Nian$$b4
000840190 7001_ $$0P:(DE-HGF)0$$aHolmes, Avram J.$$b5
000840190 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b6$$ufzj
000840190 7001_ $$0P:(DE-HGF)0$$aYeo, B. T. Thomas$$b7$$eCorresponding author
000840190 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhx179$$gp. 1 - 20$$p1-20$$tCerebral cortex$$v $$x1460-2199$$y2017
000840190 8564_ $$uhttps://juser.fz-juelich.de/record/840190/files/bhx179-1.pdf$$yRestricted
000840190 8564_ $$uhttps://juser.fz-juelich.de/record/840190/files/bhx179-1.gif?subformat=icon$$xicon$$yRestricted
000840190 8564_ $$uhttps://juser.fz-juelich.de/record/840190/files/bhx179-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840190 8564_ $$uhttps://juser.fz-juelich.de/record/840190/files/bhx179-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840190 8564_ $$uhttps://juser.fz-juelich.de/record/840190/files/bhx179-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840190 8564_ $$uhttps://juser.fz-juelich.de/record/840190/files/bhx179-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840190 909CO $$ooai:juser.fz-juelich.de:840190$$pVDB
000840190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b6$$kFZJ
000840190 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000840190 9141_ $$y2018
000840190 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000840190 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840190 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2015
000840190 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840190 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840190 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840190 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840190 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840190 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840190 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840190 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000840190 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000840190 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2015
000840190 920__ $$lyes
000840190 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000840190 980__ $$ajournal
000840190 980__ $$aVDB
000840190 980__ $$aI:(DE-Juel1)INM-7-20090406
000840190 980__ $$aUNRESTRICTED