001     840190
005     20210129231754.0
024 7 _ |a 10.1093/cercor/bhx179
|2 doi
024 7 _ |a 1047-3211
|2 ISSN
024 7 _ |a 1460-2199
|2 ISSN
024 7 _ |a pmid:28981612
|2 pmid
024 7 _ |a WOS:000443545600003
|2 WOS
024 7 _ |a altmetric:22248662
|2 altmetric
037 _ _ |a FZJ-2017-07745
082 _ _ |a 610
100 1 _ |a Schaefer, Alexander
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI
260 _ _ |a Oxford
|c 2017
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1530270672_14340
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A central goal in systems neuroscience is the parcellation of the cerebral cortex into discrete neurobiological "atoms". Resting-state functional magnetic resonance imaging (rs-fMRI) offers the possibility of in vivo human cortical parcellation. Almost all previous parcellations relied on 1 of 2 approaches. The local gradient approach detects abrupt transitions in functional connectivity patterns. These transitions potentially reflect cortical areal boundaries defined by histology or visuotopic fMRI. By contrast, the global similarity approach clusters similar functional connectivity patterns regardless of spatial proximity, resulting in parcels with homogeneous (similar) rs-fMRI signals. Here, we propose a gradient-weighted Markov Random Field (gwMRF) model integrating local gradient and global similarity approaches. Using task-fMRI and rs-fMRI across diverse acquisition protocols, we found gwMRF parcellations to be more homogeneous than 4 previously published parcellations. Furthermore, gwMRF parcellations agreed with the boundaries of certain cortical areas defined using histology and visuotopic fMRI. Some parcels captured subareal (somatotopic and visuotopic) features that likely reflect distinct computational units within known cortical areas. These results suggest that gwMRF parcellations reveal neurobiologically meaningful features of brain organization and are potentially useful for future applications requiring dimensionality reduction of voxel-wise fMRI data. Multiresolution parcellations generated from 1489 participants are publicly available
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kong, Ru
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gordon, Evan M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Laumann, Timothy O.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zuo, Xi-Nian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Holmes, Avram J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 6
|u fzj
700 1 _ |a Yeo, B. T. Thomas
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1093/cercor/bhx179
|g p. 1 - 20
|0 PERI:(DE-600)1483485-6
|p 1-20
|t Cerebral cortex
|v
|y 2017
|x 1460-2199
856 4 _ |u https://juser.fz-juelich.de/record/840190/files/bhx179-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840190/files/bhx179-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840190/files/bhx179-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840190/files/bhx179-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840190/files/bhx179-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840190/files/bhx179-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840190
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CEREB CORTEX : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CEREB CORTEX : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21