001     840198
005     20210129231756.0
024 7 _ |a 10.1021/acs.inorgchem.5b02594
|2 doi
024 7 _ |a 0020-1669
|2 ISSN
024 7 _ |a 1520-510X
|2 ISSN
024 7 _ |a pmid:26998674
|2 pmid
024 7 _ |a WOS:000373550700020
|2 WOS
024 7 _ |a altmetric:6254854
|2 altmetric
037 _ _ |a FZJ-2017-07752
082 _ _ |a 540
100 1 _ |a Azough, Feridoon
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Tungsten Bronze Barium Neodymium Titanate (Ba 6–3 n Nd 8+2 n Ti 18 O 54 ): An Intrinsic Nanostructured Material and Its Defect Distribution
260 _ _ |a Washington, DC
|c 2016
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511525515_11654
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We investigated the structure of the tungsten bronze barium neodymium titanates Ba6–3nNd8+2nTi18O54, which are exploited as microwave dielectric ceramics. They form a complex nanostructure, which resembles a nanofilm with stacking layers of ∼12 Å thickness. The synthesized samples of Ba6–3nNd8+2nTi18O54 (n = 0, 0.3, 0.4, 0.5) are characterized by pentagonal and tetragonal columns, where the A cations are distributed in three symmetrically inequivalent sites. Synchrotron X-ray diffraction and electron energy loss spectroscopy allowed for quantitative analysis of the site occupancy, which determines the defect distribution. This is corroborated by density functional theory calculations. Pentagonal columns are dominated by Ba, and tetragonal columns are dominated by Nd, although specific Nd sites exhibit significant concentrations of Ba. The data indicated significant elongation of the Ba columns in the pentagonal positions and of the Nd columns in tetragonal positions involving a zigzag arrangement of atoms along the b lattice direction. We found that the preferred Ba substitution occurs at Nd[3]/[4] followed by Nd[2] and Nd[1]/[5] sites, which is significantly different to that proposed in earlier studies. Our results on the Ba6–3nNd8+2nTi18O54 “perovskite” superstructure and its defect distribution are particularly valuable in those applications where the optimization of material properties of oxides is imperative; these include not only microwave ceramics but also thermoelectric materials, where the nanostructure and the distribution of the dopants will reduce the thermal conductivity.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cernik, Robert Joseph
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schaffer, Bernhard
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kepaptsoglou, Demie
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ramasse, Quentin Mathieu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bigatti, Marco
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ali, Amir
|0 P:(DE-HGF)0
|b 6
700 1 _ |a MacLaren, Ian
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Barthel, Juri
|0 P:(DE-Juel1)130525
|b 8
|u fzj
700 1 _ |a Molinari, Marco
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Baran, Jakub Dominik
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Parker, Stephen Charles
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Freer, Robert
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
773 _ _ |a 10.1021/acs.inorgchem.5b02594
|g Vol. 55, no. 7, p. 3338 - 3350
|0 PERI:(DE-600)1484438-2
|n 7
|p 3338 - 3350
|t Inorganic chemistry
|v 55
|y 2016
|x 1520-510X
856 4 _ |u https://juser.fz-juelich.de/record/840198/files/acs.inorgchem.5b02594.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840198/files/acs.inorgchem.5b02594.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840198/files/acs.inorgchem.5b02594.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840198/files/acs.inorgchem.5b02594.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840198/files/acs.inorgchem.5b02594.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840198/files/acs.inorgchem.5b02594.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840198
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130525
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INORG CHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21