001     8402
005     20200402205801.0
024 7 _ |2 pmid
|a pmid:19716396
024 7 _ |2 pmc
|a pmc:PMC2784017
024 7 _ |2 DOI
|a 10.1016/j.addr.2009.06.008
024 7 _ |2 WOS
|a WOS:000272600300014
024 7 _ |a altmetric:6670630
|2 altmetric
037 _ _ |a PreJuSER-8402
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Pharmacology & Pharmacy
100 1 _ |0 P:(DE-HGF)0
|a Kagan, V.E.
|b 0
245 _ _ |a Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactions
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2009
300 _ _ |a 1375 - 1385
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 21861
|a Advanced Drug Delivery Reviews
|v 61
|x 0169-409X
|y 14
500 _ _ |a This work was supported by NIH Grants U19 AIO68021, HL70755, HD057587, NS061817, NORA 927Z1LU, PittGrid (http://www.pittgrid. pitt.edu) and la junta de Extremadura -Consejeria de Infraestructuras y Desarrollo Tecnologico- y el Fondo Social Europeo (Orden 2008050288).
520 _ _ |a Effective regulation of highly compartmentalized production of reactive oxygen species and peroxidation reactions in mitochondria requires targeting of small molecule antioxidants and antioxidant enzymes into the organelles. This review describes recently developed approaches to mitochondrial targeting of small biologically active molecules based on: (i) preferential accumulation in mitochondria because of their hydrophobicity and positive charge (hydrophobic cations), (ii) binding with high affinity to an intra-mitochondrial constituent, and (iii) metabolic conversions by specific mitochondrial enzymes to reveal an active entity. In addition, targeted delivery of antioxidant enzymes via expression of leader sequences directing the proteins into mitochondria is considered. Examples of successful antioxidant and anti-apoptotic protection based on the ability of targeted cargoes to inhibit cytochrome c-catalyzed peroxidation of a mitochondria-specific phospholipid cardiolipin, in vitro and in vivo are presented. Particular emphasis is placed on the employment of triphenylphosphonium- and hemi-gramicidin S-moieties as two effective vehicles for mitochondrial delivery of antioxidants.
536 _ _ |0 G:(DE-Juel1)FUEK443
|2 G:(DE-HGF)
|a Programm Biosoft
|c N03
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Antioxidants: pharmacology
650 _ 2 |2 MeSH
|a Apoptosis: drug effects
650 _ 2 |2 MeSH
|a Drug Delivery Systems: methods
650 _ 2 |2 MeSH
|a Electron Transport Complex I: metabolism
650 _ 2 |2 MeSH
|a Free Radical Scavengers: chemistry
650 _ 2 |2 MeSH
|a Free Radical Scavengers: pharmacokinetics
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Mitochondria: drug effects
650 _ 2 |2 MeSH
|a Mitochondria: metabolism
650 _ 2 |2 MeSH
|a Models, Biological
650 _ 2 |2 MeSH
|a Molecular Structure
650 _ 2 |2 MeSH
|a Oxidation-Reduction: drug effects
650 _ 2 |2 MeSH
|a Oxidative Stress: drug effects
650 _ 2 |2 MeSH
|a Reactive Oxygen Species: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a Antioxidants
650 _ 7 |0 0
|2 NLM Chemicals
|a Free Radical Scavengers
650 _ 7 |0 0
|2 NLM Chemicals
|a Reactive Oxygen Species
650 _ 7 |0 EC 1.6.5.3
|2 NLM Chemicals
|a Electron Transport Complex I
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Cytochrome c
653 2 0 |2 Author
|a Cardiolipin
653 2 0 |2 Author
|a Mitochondria
653 2 0 |2 Author
|a Apoptosis
653 2 0 |2 Author
|a Triphenylphosphonium
653 2 0 |2 Author
|a MnSOD
653 2 0 |2 Author
|a Peroxidation
653 2 0 |2 Author
|a Nitroxides
653 2 0 |2 Author
|a Gramicidin
653 2 0 |2 Author
|a S-conjugates
700 1 _ |0 P:(DE-HGF)0
|a Wipf, P.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Stoyanovsky, D.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Greenberger, J.S.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Borisenko, G.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Belikova, N.A.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Yanamala, N.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Samhan Arias, A.K.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Tungekar, M.A.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Jiang, J.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Tyurina, Y.Y.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Ji, J.
|b 11
700 1 _ |0 P:(DE-Juel1)VDB44599
|a Klein-Seetharaman, J.
|b 12
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Pitt, B.R.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Shvedova, A.A.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Bayir, H.
|b 15
773 _ _ |0 PERI:(DE-600)2020327-5
|a 10.1016/j.addr.2009.06.008
|g Vol. 61, p. 1375 - 1385
|p 1375 - 1385
|q 61<1375 - 1385
|t Advanced drug delivery reviews
|v 61
|x 0169-409X
|y 2009
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784017
909 C O |o oai:juser.fz-juelich.de:8402
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK443
|a DE-HGF
|b SchlĂĽsseltechnologien
|k N03
|l BioSoft
|v Programm Biosoft
|x 0
|z entfällt
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)ISB-2-20090406
|d 31.12.2010
|g ISB
|k ISB-2
|l Molekulare Biophysik
|x 0
970 _ _ |a VDB:(DE-Juel1)117325
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)ISB-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21