000840226 001__ 840226
000840226 005__ 20250129094235.0
000840226 0247_ $$2doi$$a10.1016/j.ssi.2017.10.003
000840226 0247_ $$2ISSN$$a0167-2738
000840226 0247_ $$2ISSN$$a1872-7689
000840226 0247_ $$2WOS$$aWOS:000418214100006
000840226 037__ $$aFZJ-2017-07780
000840226 082__ $$a530
000840226 1001_ $$0P:(DE-Juel1)159434$$aMahmoud, Abdelfattah$$b0
000840226 245__ $$aA Mössbauer spectral study of degradation in La 0.58 Sr 0.4 Fe 0.5 Co 0.5 O 3−x after long-term operation in solid oxide electrolysis cells
000840226 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000840226 3367_ $$2DRIVER$$aarticle
000840226 3367_ $$2DataCite$$aOutput Types/Journal article
000840226 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511777365_17625
000840226 3367_ $$2BibTeX$$aARTICLE
000840226 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840226 3367_ $$00$$2EndNote$$aJournal Article
000840226 520__ $$aDegradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La0.58Sr0.4Fe0.5Co0.5O3−x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce0.8Gd0.2O1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containing anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co3O4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.
000840226 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000840226 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000840226 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000840226 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000840226 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000840226 588__ $$aDataset connected to CrossRef
000840226 7001_ $$0P:(DE-Juel1)145807$$aAl Daroukh, Mahmoud$$b1
000840226 7001_ $$0P:(DE-Juel1)161504$$aLipinska-Chwalek, Marta$$b2
000840226 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, Martina$$b3
000840226 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b4
000840226 7001_ $$0P:(DE-Juel1)130706$$aHermann, Raphael P.$$b5$$eCorresponding author
000840226 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2017.10.003$$gVol. 312, p. 38 - 43$$p38 - 43$$tSolid state ionics$$v312$$x0167-2738$$y2017
000840226 8564_ $$uhttps://juser.fz-juelich.de/record/840226/files/1-s2.0-S0167273817304472-main.pdf$$yRestricted
000840226 8564_ $$uhttps://juser.fz-juelich.de/record/840226/files/1-s2.0-S0167273817304472-main.gif?subformat=icon$$xicon$$yRestricted
000840226 8564_ $$uhttps://juser.fz-juelich.de/record/840226/files/1-s2.0-S0167273817304472-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840226 8564_ $$uhttps://juser.fz-juelich.de/record/840226/files/1-s2.0-S0167273817304472-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840226 8564_ $$uhttps://juser.fz-juelich.de/record/840226/files/1-s2.0-S0167273817304472-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840226 8564_ $$uhttps://juser.fz-juelich.de/record/840226/files/1-s2.0-S0167273817304472-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840226 909CO $$ooai:juser.fz-juelich.de:840226$$pVDB
000840226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161504$$aForschungszentrum Jülich$$b2$$kFZJ
000840226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich$$b3$$kFZJ
000840226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b4$$kFZJ
000840226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130706$$aForschungszentrum Jülich$$b5$$kFZJ
000840226 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000840226 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000840226 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000840226 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000840226 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000840226 9141_ $$y2017
000840226 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840226 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2015
000840226 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840226 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840226 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840226 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840226 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840226 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840226 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840226 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840226 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840226 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000840226 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000840226 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000840226 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x3
000840226 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x4
000840226 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x5
000840226 980__ $$ajournal
000840226 980__ $$aVDB
000840226 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000840226 980__ $$aI:(DE-Juel1)PGI-4-20110106
000840226 980__ $$aI:(DE-82)080009_20140620
000840226 980__ $$aI:(DE-Juel1)IEK-1-20101013
000840226 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000840226 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000840226 980__ $$aUNRESTRICTED
000840226 981__ $$aI:(DE-Juel1)IMD-2-20101013
000840226 981__ $$aI:(DE-Juel1)JCNS-2-20110106