000840227 001__ 840227
000840227 005__ 20240619091231.0
000840227 0247_ $$2doi$$a10.1016/j.jmr.2017.11.009
000840227 0247_ $$2ISSN$$a0022-2364
000840227 0247_ $$2ISSN$$a1090-7807
000840227 0247_ $$2ISSN$$a1096-0856
000840227 0247_ $$2ISSN$$a1557-8968
000840227 0247_ $$2Handle$$a2128/16436
000840227 0247_ $$2pmid$$apmid:29183004
000840227 0247_ $$2WOS$$aWOS:000424071300008
000840227 037__ $$aFZJ-2017-07781
000840227 082__ $$a550
000840227 1001_ $$0P:(DE-HGF)0$$aHuang, Xiaolei$$b0
000840227 245__ $$aAdaptive suppression of power line interference in ultra-low field magnetic resonance imaging in an unshielded environment
000840227 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000840227 3367_ $$2DRIVER$$aarticle
000840227 3367_ $$2DataCite$$aOutput Types/Journal article
000840227 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515508194_19493
000840227 3367_ $$2BibTeX$$aARTICLE
000840227 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840227 3367_ $$00$$2EndNote$$aJournal Article
000840227 520__ $$aPower-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel (s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room.
000840227 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000840227 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x1
000840227 588__ $$aDataset connected to CrossRef
000840227 7001_ $$00000-0002-6444-1134$$aDong, Hui$$b1$$eCorresponding author
000840227 7001_ $$0P:(DE-HGF)0$$aQiu, Yang$$b2
000840227 7001_ $$0P:(DE-HGF)0$$aLi, Bo$$b3
000840227 7001_ $$0P:(DE-Juel1)169638$$aTao, Quan$$b4$$ufzj
000840227 7001_ $$0P:(DE-Juel1)128754$$aZhang, Yi$$b5$$ufzj
000840227 7001_ $$0P:(DE-Juel1)128697$$aKrause, Hans-Joachim$$b6$$eCorresponding author
000840227 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b7$$ufzj
000840227 7001_ $$0P:(DE-HGF)0$$aXie, Xiaoming$$b8
000840227 773__ $$0PERI:(DE-600)1469665-4$$a10.1016/j.jmr.2017.11.009$$gVol. 286, p. 52 - 59$$p52 - 59$$tJournal of magnetic resonance$$v286$$x1090-7807$$y2018
000840227 8564_ $$uhttps://juser.fz-juelich.de/record/840227/files/Authors%20fulltext.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000840227 8564_ $$uhttps://juser.fz-juelich.de/record/840227/files/Restricted%20published%20version.pdf$$yRestricted
000840227 8564_ $$uhttps://juser.fz-juelich.de/record/840227/files/Authors%20fulltext.gif?subformat=icon$$xicon$$yOpenAccess$$zStatID:(DE-HGF)0510
000840227 8564_ $$uhttps://juser.fz-juelich.de/record/840227/files/Authors%20fulltext.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess$$zStatID:(DE-HGF)0510
000840227 8564_ $$uhttps://juser.fz-juelich.de/record/840227/files/Authors%20fulltext.jpg?subformat=icon-180$$xicon-180$$yOpenAccess$$zStatID:(DE-HGF)0510
000840227 8564_ $$uhttps://juser.fz-juelich.de/record/840227/files/Authors%20fulltext.jpg?subformat=icon-640$$xicon-640$$yOpenAccess$$zStatID:(DE-HGF)0510
000840227 8564_ $$uhttps://juser.fz-juelich.de/record/840227/files/Authors%20fulltext.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510
000840227 8564_ $$uhttps://juser.fz-juelich.de/record/840227/files/Restricted%20published%20version.gif?subformat=icon$$xicon$$yRestricted
000840227 8564_ $$uhttps://juser.fz-juelich.de/record/840227/files/Restricted%20published%20version.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840227 8564_ $$uhttps://juser.fz-juelich.de/record/840227/files/Restricted%20published%20version.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840227 8564_ $$uhttps://juser.fz-juelich.de/record/840227/files/Restricted%20published%20version.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840227 8564_ $$uhttps://juser.fz-juelich.de/record/840227/files/Restricted%20published%20version.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840227 909CO $$ooai:juser.fz-juelich.de:840227$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000840227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169638$$aForschungszentrum Jülich$$b4$$kFZJ
000840227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128754$$aForschungszentrum Jülich$$b5$$kFZJ
000840227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128697$$aForschungszentrum Jülich$$b6$$kFZJ
000840227 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b7$$kFZJ
000840227 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000840227 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x1
000840227 9141_ $$y2018
000840227 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840227 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000840227 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840227 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAGN RESON : 2015
000840227 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840227 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840227 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840227 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840227 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840227 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840227 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840227 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840227 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840227 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840227 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840227 920__ $$lyes
000840227 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000840227 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000840227 9801_ $$aFullTexts
000840227 980__ $$ajournal
000840227 980__ $$aVDB
000840227 980__ $$aUNRESTRICTED
000840227 980__ $$aI:(DE-Juel1)ICS-8-20110106
000840227 980__ $$aI:(DE-82)080009_20140620
000840227 981__ $$aI:(DE-Juel1)IBI-3-20200312