001     840227
005     20240619091231.0
024 7 _ |a 10.1016/j.jmr.2017.11.009
|2 doi
024 7 _ |a 0022-2364
|2 ISSN
024 7 _ |a 1090-7807
|2 ISSN
024 7 _ |a 1096-0856
|2 ISSN
024 7 _ |a 1557-8968
|2 ISSN
024 7 _ |a 2128/16436
|2 Handle
024 7 _ |a pmid:29183004
|2 pmid
024 7 _ |a WOS:000424071300008
|2 WOS
037 _ _ |a FZJ-2017-07781
082 _ _ |a 550
100 1 _ |a Huang, Xiaolei
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Adaptive suppression of power line interference in ultra-low field magnetic resonance imaging in an unshielded environment
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515508194_19493
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Power-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel (s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dong, Hui
|0 0000-0002-6444-1134
|b 1
|e Corresponding author
700 1 _ |a Qiu, Yang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Li, Bo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tao, Quan
|0 P:(DE-Juel1)169638
|b 4
|u fzj
700 1 _ |a Zhang, Yi
|0 P:(DE-Juel1)128754
|b 5
|u fzj
700 1 _ |a Krause, Hans-Joachim
|0 P:(DE-Juel1)128697
|b 6
|e Corresponding author
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 7
|u fzj
700 1 _ |a Xie, Xiaoming
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1016/j.jmr.2017.11.009
|g Vol. 286, p. 52 - 59
|0 PERI:(DE-600)1469665-4
|p 52 - 59
|t Journal of magnetic resonance
|v 286
|y 2018
|x 1090-7807
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/840227/files/Authors%20fulltext.pdf
856 4 _ |u https://juser.fz-juelich.de/record/840227/files/Restricted%20published%20version.pdf
|y Restricted
856 4 _ |y OpenAccess
|x icon
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/840227/files/Authors%20fulltext.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/840227/files/Authors%20fulltext.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/840227/files/Authors%20fulltext.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/840227/files/Authors%20fulltext.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/840227/files/Authors%20fulltext.pdf?subformat=pdfa
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/840227/files/Restricted%20published%20version.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/840227/files/Restricted%20published%20version.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/840227/files/Restricted%20published%20version.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/840227/files/Restricted%20published%20version.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/840227/files/Restricted%20published%20version.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840227
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169638
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128754
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128713
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MAGN RESON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21