000840231 001__ 840231
000840231 005__ 20210129231802.0
000840231 0247_ $$2doi$$a10.1063/1.4994177
000840231 0247_ $$2ISSN$$a1054-1500
000840231 0247_ $$2ISSN$$a1089-7682
000840231 0247_ $$2Handle$$a2128/16007
000840231 0247_ $$2pmid$$apmid:28863499
000840231 0247_ $$2WOS$$aWOS:000409112600027
000840231 0247_ $$2altmetric$$aaltmetric:14171878
000840231 037__ $$aFZJ-2017-07785
000840231 041__ $$aEnglish
000840231 082__ $$a530
000840231 1001_ $$0P:(DE-HGF)0$$aManik, Debsankha$$b0$$eCorresponding author
000840231 245__ $$aCycle flows and multistability in oscillatory networks
000840231 260__ $$aWoodbury, NY$$bAmerican Institute of Physics$$c2017
000840231 3367_ $$2DRIVER$$aarticle
000840231 3367_ $$2DataCite$$aOutput Types/Journal article
000840231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511960970_9736
000840231 3367_ $$2BibTeX$$aARTICLE
000840231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840231 3367_ $$00$$2EndNote$$aJournal Article
000840231 520__ $$aWe study multistability in phase locked states in networks of phase oscillators under both Kuramoto dynamics and swing equation dynamics - a popular model for studying coarse-scale dynamics of an electrical AC power grid. We first establish the existence of geometrically frustrated states in such systems - where although a steady state flow pattern exists, no fixed point exists in the dynamical variables of phases due to geometrical constraints. We then describe the stable fixed points of the system with phase differences along each edge not exceeding pi/2 in terms of cycle flows - constant flows along each simple cycle - as opposed to phase angles or flows. The cycle flow formalism allows us to compute tight upper and lower bounds to the number of fixed points in ring networks. We show that long elementary cycles, strong edge weights, and spatially homogeneous distribution of natural frequencies (for the Kuramoto model) or power injections (for the oscillator model for power grids) cause such networks to have more fixed points. We generalize some of these bounds to arbitrary planar topologies and derive scaling relations in the limit of large capacity and large cycle lengths, which we show to be quite accurate by numerical computation. Finally, we present an algorithm to compute all phase locked states - both stable and unstable - for planar networks.
000840231 536__ $$0G:(DE-HGF)POF3-153$$a153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)$$cPOF3-153$$fPOF III$$x0
000840231 536__ $$0G:(HGF)VH-NG-1025_20112014$$aVH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)$$cVH-NG-1025_20112014$$x1
000840231 536__ $$0G:(Grant)PIK_082017$$aCoNDyNet - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (PIK_082017)$$cPIK_082017$$x2
000840231 588__ $$aDataset connected to CrossRef
000840231 7001_ $$0P:(DE-HGF)0$$aTimme, Marc$$b1
000840231 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b2
000840231 773__ $$0PERI:(DE-600)1472677-4$$a10.1063/1.4994177$$gVol. 27, no. 8, p. 083123 -$$n8$$p083123 -$$tChaos$$v27$$x1089-7682$$y2017
000840231 8564_ $$uhttps://doi.org/10.1063/1.4994177
000840231 8564_ $$uhttps://juser.fz-juelich.de/record/840231/files/1.4994177.pdf$$yOpenAccess
000840231 8564_ $$uhttps://juser.fz-juelich.de/record/840231/files/1.4994177.gif?subformat=icon$$xicon$$yOpenAccess
000840231 8564_ $$uhttps://juser.fz-juelich.de/record/840231/files/1.4994177.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840231 8564_ $$uhttps://juser.fz-juelich.de/record/840231/files/1.4994177.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840231 8564_ $$uhttps://juser.fz-juelich.de/record/840231/files/1.4994177.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840231 8564_ $$uhttps://juser.fz-juelich.de/record/840231/files/1.4994177.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840231 909CO $$ooai:juser.fz-juelich.de:840231$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000840231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b2$$kFZJ
000840231 9131_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000840231 9141_ $$y2017
000840231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840231 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000840231 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHAOS : 2015
000840231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840231 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840231 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840231 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840231 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840231 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840231 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840231 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840231 920__ $$lno
000840231 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000840231 980__ $$ajournal
000840231 980__ $$aVDB
000840231 980__ $$aUNRESTRICTED
000840231 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000840231 9801_ $$aFullTexts