000840231 001__ 840231 000840231 005__ 20210129231802.0 000840231 0247_ $$2doi$$a10.1063/1.4994177 000840231 0247_ $$2ISSN$$a1054-1500 000840231 0247_ $$2ISSN$$a1089-7682 000840231 0247_ $$2Handle$$a2128/16007 000840231 0247_ $$2pmid$$apmid:28863499 000840231 0247_ $$2WOS$$aWOS:000409112600027 000840231 0247_ $$2altmetric$$aaltmetric:14171878 000840231 037__ $$aFZJ-2017-07785 000840231 041__ $$aEnglish 000840231 082__ $$a530 000840231 1001_ $$0P:(DE-HGF)0$$aManik, Debsankha$$b0$$eCorresponding author 000840231 245__ $$aCycle flows and multistability in oscillatory networks 000840231 260__ $$aWoodbury, NY$$bAmerican Institute of Physics$$c2017 000840231 3367_ $$2DRIVER$$aarticle 000840231 3367_ $$2DataCite$$aOutput Types/Journal article 000840231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511960970_9736 000840231 3367_ $$2BibTeX$$aARTICLE 000840231 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000840231 3367_ $$00$$2EndNote$$aJournal Article 000840231 520__ $$aWe study multistability in phase locked states in networks of phase oscillators under both Kuramoto dynamics and swing equation dynamics - a popular model for studying coarse-scale dynamics of an electrical AC power grid. We first establish the existence of geometrically frustrated states in such systems - where although a steady state flow pattern exists, no fixed point exists in the dynamical variables of phases due to geometrical constraints. We then describe the stable fixed points of the system with phase differences along each edge not exceeding pi/2 in terms of cycle flows - constant flows along each simple cycle - as opposed to phase angles or flows. The cycle flow formalism allows us to compute tight upper and lower bounds to the number of fixed points in ring networks. We show that long elementary cycles, strong edge weights, and spatially homogeneous distribution of natural frequencies (for the Kuramoto model) or power injections (for the oscillator model for power grids) cause such networks to have more fixed points. We generalize some of these bounds to arbitrary planar topologies and derive scaling relations in the limit of large capacity and large cycle lengths, which we show to be quite accurate by numerical computation. Finally, we present an algorithm to compute all phase locked states - both stable and unstable - for planar networks. 000840231 536__ $$0G:(DE-HGF)POF3-153$$a153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)$$cPOF3-153$$fPOF III$$x0 000840231 536__ $$0G:(HGF)VH-NG-1025_20112014$$aVH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)$$cVH-NG-1025_20112014$$x1 000840231 536__ $$0G:(Grant)PIK_082017$$aCoNDyNet - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (PIK_082017)$$cPIK_082017$$x2 000840231 588__ $$aDataset connected to CrossRef 000840231 7001_ $$0P:(DE-HGF)0$$aTimme, Marc$$b1 000840231 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b2 000840231 773__ $$0PERI:(DE-600)1472677-4$$a10.1063/1.4994177$$gVol. 27, no. 8, p. 083123 -$$n8$$p083123 -$$tChaos$$v27$$x1089-7682$$y2017 000840231 8564_ $$uhttps://doi.org/10.1063/1.4994177 000840231 8564_ $$uhttps://juser.fz-juelich.de/record/840231/files/1.4994177.pdf$$yOpenAccess 000840231 8564_ $$uhttps://juser.fz-juelich.de/record/840231/files/1.4994177.gif?subformat=icon$$xicon$$yOpenAccess 000840231 8564_ $$uhttps://juser.fz-juelich.de/record/840231/files/1.4994177.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000840231 8564_ $$uhttps://juser.fz-juelich.de/record/840231/files/1.4994177.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000840231 8564_ $$uhttps://juser.fz-juelich.de/record/840231/files/1.4994177.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000840231 8564_ $$uhttps://juser.fz-juelich.de/record/840231/files/1.4994177.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000840231 909CO $$ooai:juser.fz-juelich.de:840231$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000840231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b2$$kFZJ 000840231 9131_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0 000840231 9141_ $$y2017 000840231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000840231 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000840231 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000840231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHAOS : 2015 000840231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000840231 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000840231 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000840231 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000840231 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000840231 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000840231 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000840231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000840231 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000840231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000840231 920__ $$lno 000840231 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0 000840231 980__ $$ajournal 000840231 980__ $$aVDB 000840231 980__ $$aUNRESTRICTED 000840231 980__ $$aI:(DE-Juel1)IEK-STE-20101013 000840231 9801_ $$aFullTexts