001     840231
005     20210129231802.0
024 7 _ |a 10.1063/1.4994177
|2 doi
024 7 _ |a 1054-1500
|2 ISSN
024 7 _ |a 1089-7682
|2 ISSN
024 7 _ |a 2128/16007
|2 Handle
024 7 _ |a pmid:28863499
|2 pmid
024 7 _ |a WOS:000409112600027
|2 WOS
024 7 _ |a altmetric:14171878
|2 altmetric
037 _ _ |a FZJ-2017-07785
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Manik, Debsankha
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Cycle flows and multistability in oscillatory networks
260 _ _ |a Woodbury, NY
|c 2017
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511960970_9736
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We study multistability in phase locked states in networks of phase oscillators under both Kuramoto dynamics and swing equation dynamics - a popular model for studying coarse-scale dynamics of an electrical AC power grid. We first establish the existence of geometrically frustrated states in such systems - where although a steady state flow pattern exists, no fixed point exists in the dynamical variables of phases due to geometrical constraints. We then describe the stable fixed points of the system with phase differences along each edge not exceeding pi/2 in terms of cycle flows - constant flows along each simple cycle - as opposed to phase angles or flows. The cycle flow formalism allows us to compute tight upper and lower bounds to the number of fixed points in ring networks. We show that long elementary cycles, strong edge weights, and spatially homogeneous distribution of natural frequencies (for the Kuramoto model) or power injections (for the oscillator model for power grids) cause such networks to have more fixed points. We generalize some of these bounds to arbitrary planar topologies and derive scaling relations in the limit of large capacity and large cycle lengths, which we show to be quite accurate by numerical computation. Finally, we present an algorithm to compute all phase locked states - both stable and unstable - for planar networks.
536 _ _ |a 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)
|0 G:(DE-HGF)POF3-153
|c POF3-153
|f POF III
|x 0
536 _ _ |a VH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)
|0 G:(HGF)VH-NG-1025_20112014
|c VH-NG-1025_20112014
|x 1
536 _ _ |a CoNDyNet - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (PIK_082017)
|0 G:(Grant)PIK_082017
|c PIK_082017
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Timme, Marc
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Witthaut, Dirk
|0 P:(DE-Juel1)162277
|b 2
773 _ _ |a 10.1063/1.4994177
|g Vol. 27, no. 8, p. 083123 -
|0 PERI:(DE-600)1472677-4
|n 8
|p 083123 -
|t Chaos
|v 27
|y 2017
|x 1089-7682
856 4 _ |u https://doi.org/10.1063/1.4994177
856 4 _ |u https://juser.fz-juelich.de/record/840231/files/1.4994177.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840231/files/1.4994177.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840231/files/1.4994177.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840231/files/1.4994177.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840231/files/1.4994177.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840231/files/1.4994177.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:840231
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162277
913 1 _ |a DE-HGF
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|2 G:(DE-HGF)POF3-100
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHAOS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21