000840247 001__ 840247
000840247 005__ 20210129231803.0
000840247 0247_ $$2Handle$$a2128/15991
000840247 037__ $$aFZJ-2017-07800
000840247 1001_ $$0P:(DE-Juel1)172766$$aHerbers, Patrick$$b0$$ufzj
000840247 1112_ $$aBernstein Conference 2017$$cGöttingen$$d2017-09-12 - 2017-09-15$$wGermany
000840247 245__ $$aVisual exploration and generation of connectivity in neural networks: bridging the gap between empirical data and theoretical model definition.
000840247 260__ $$c2017
000840247 3367_ $$033$$2EndNote$$aConference Paper
000840247 3367_ $$2BibTeX$$aINPROCEEDINGS
000840247 3367_ $$2DRIVER$$aconferenceObject
000840247 3367_ $$2ORCID$$aCONFERENCE_POSTER
000840247 3367_ $$2DataCite$$aOutput Types/Conference Poster
000840247 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1586172563_15239$$xAfter Call
000840247 520__ $$aThe study of connectivity is central in the diverse disciplines of neuroscience. On one hand, the structured definition of network connectivity is an essential step in network simulations. On the other hand, we can derive connectivity information from experimental data and various theoretical models at multiple scales. However, the connectivity information in these two contexts is represented differently. This results in a language gap limiting the flow of knowledge learned at different levels of abstraction. In this work, we present a first step in the creation of a shared visual language to bridge this gap between model based and empirical neuroscience, allowing us to work towards a single integrated representation of the brain.We have developed a visual and source-agnostic interactive interface to generate connectivity in neural networks at various scales. Based on NeuroScheme [1] and the Connection Set Algebra (CSA)[2], we can generate connectivity and use it in simulator-specific scripts to later perform simulations of the dynamics of the network. Our approach allows us to interactively create, explore and visualize connectivity even for large scale networks where probability based connections are used to describe the synapse generation. Here we show initial results of the tool applied to Potjan's and Diesmann microcircuit model as an initial use case for describing and exploring the connectivity.With this approach, we offer the neuroscientific community a generic tool for the easy generation and exploration of connectivity. The lack of dependency on a specific simulator makes this tool a good starting point for validation of complex neural network models using many simulation and emulation platforms, particularly when coupled. Our future applications involve incorporating this tool to complete workflows consisting of raw data processing, interactive exploration, creation and visualization of abstract connectivity models, simulation, analysis and validation.
000840247 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000840247 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000840247 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000840247 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x3
000840247 7001_ $$0P:(DE-HGF)0$$aGalindo, Sergio$$b1
000840247 7001_ $$0P:(DE-Juel1)168169$$aKlijn, Wouter$$b2$$eCorresponding author$$ufzj
000840247 7001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b3$$eCorresponding author$$ufzj
000840247 7001_ $$0P:(DE-HGF)0$$aBrito, Juan Pedro$$b4
000840247 7001_ $$0P:(DE-HGF)0$$aToharia, Pablo$$b5
000840247 7001_ $$0P:(DE-HGF)0$$aMata, Susana$$b6
000840247 7001_ $$0P:(DE-HGF)0$$aRobles, Oscar$$b7
000840247 7001_ $$0P:(DE-HGF)0$$aPastor, Luis$$b8
000840247 7001_ $$0P:(DE-HGF)0$$aGarcia-Cantero, Juan$$b9
000840247 7001_ $$0P:(DE-Juel1)161525$$aPeyser, Alexander$$b10$$ufzj
000840247 8564_ $$uhttps://juser.fz-juelich.de/record/840247/files/ViCoGen.pdf$$yOpenAccess
000840247 8564_ $$uhttps://juser.fz-juelich.de/record/840247/files/ViCoGen.gif?subformat=icon$$xicon$$yOpenAccess
000840247 8564_ $$uhttps://juser.fz-juelich.de/record/840247/files/ViCoGen.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840247 8564_ $$uhttps://juser.fz-juelich.de/record/840247/files/ViCoGen.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840247 8564_ $$uhttps://juser.fz-juelich.de/record/840247/files/ViCoGen.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840247 8564_ $$uhttps://juser.fz-juelich.de/record/840247/files/ViCoGen.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840247 909CO $$ooai:juser.fz-juelich.de:840247$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000840247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172766$$aForschungszentrum Jülich$$b0$$kFZJ
000840247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168169$$aForschungszentrum Jülich$$b2$$kFZJ
000840247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b3$$kFZJ
000840247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161525$$aForschungszentrum Jülich$$b10$$kFZJ
000840247 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000840247 9141_ $$y2017
000840247 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840247 920__ $$lyes
000840247 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000840247 980__ $$aposter
000840247 980__ $$aVDB
000840247 980__ $$aI:(DE-Juel1)JSC-20090406
000840247 980__ $$aUNRESTRICTED
000840247 9801_ $$aFullTexts