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Although the title seems self-contradictory, it does not contain a misprint. The model we study is a
seemingly minor modification of the “true self-avoiding walk” model of Amit, Parisi, and Peliti in two
dimensions. The walks in it are self-repelling up to a characteristic time T� (which depends on various
parameters), but spontaneously (i.e., without changing any control parameter) become self-trapping after
that. For free walks, T� is astronomically large, but on finite lattices the transition is easily observable. In
the self-trapped regime, walks are subdiffusive and intermittent, spending longer and longer times in small
areas until they escape and move rapidly to a new area. In spite of this, these walks are extremely efficient in
covering finite lattices, as measured by average cover times.
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Random walks are ubiquitous in nature, science, and
technology. Be it the thermal motion of gas molecules [1],
the evolution of financial indices [2,3], the foraging of an
animal [4], the Monte Carlo code of a scientist working in
statistical physics [5], the shape of a randomly coiled
polymer in a good solvent [6], or the carrying of a message
in a random ad hoc network [7], they are all more or less
described by random walks; and thus random walks have
been among the most studied objects in mathematical
statistics [8]. But in most of these problems they only
represent a first crude approximation. In a gas or liquid,
there is usually also convection. Financial time series show
heavy tailed distributions [3]. And animal walks are not
entirely random but also guided by the availability of food,
and are often characterized by alternating periods of very
slow and fast motion, what is often modeled as Levy flights
[9]. One of the most common deviations from perfect
randomness is that random walks often have memory.
Maybe the best studied model of walks with memory is

that of self-avoiding walks (SAWs) [10], which describe
the statistics of very long chain molecules, and where the
“memory” takes care of the fact that in a growing polymer,
a new monomer cannot be placed onto a site that is
occupied already. This modification implies that in < 4
dimensions the characteristic size of a polymer made of N
monomers increases faster than ∼N1=2. More precisely, the
increase follows, for d < 4, a power law R ∼ Nν with
ν > 1=2, while R=N1=2 ∼ ðlnNÞα with α ¼ 1=4 [11] at the
upper critical dimension d ¼ 4.
As pointed out byAmit et al. [12], while SAWs are indeed

self-avoiding as geometrical objects, they are as dynamical
walks not self-avoiding but self-killing: When a walker tries
to step on a sitewhere she has already been, she is just killed.
In what they call true self-avoiding walks (TSAWs), the
walker instead tries to avoid in a short-sighted way to step on
her own traces. Technically, this is implemented on a lattice
by a walk where at each time step a unit of debris is dropped

onto the sitewhere thewalker stands. As time goes on, a hilly
landscape is formed where the height hi at site i is just the
amount of debris. The self-avoidance bias is then given by
probabilities pj ∝ e−βhj to step onto neighboring sites j,
where β plays the role of an inverse temperature. The self-
avoidance is negligible for large temperature, while it is
strongest for β ¼ ∞. But even then its effect is much milder
than in the original SAWmodel. Nowalker is killed, but they
just try to turn away gently. For β ¼ ∞, the walker always
chooses randomly between the neighbors with the smallest
height. In the mathematical literature, such walks are often
called self-repelling.
In [12] it was shown that the upper critical dimension for

TSAWs is not d ¼ 4 but d ¼ 2. Thus they show trivial
scaling for d > 2, while they are swollen, R ∼ Nν with
ν > 1=2, for d ¼ 1. For d ¼ 2 there should be again
logarithmic corrections, but the exponent in the ansatz
R=N1=2 ∼ ðlnNÞα is not known, in spite of considerable
efforts [12–14]. A first attempt to obtain α was made in
[12], where an effective field theory was proposed in which
the bias of the walk was—in a coarse-grained picture
amenable to renormalization group (RG) ideas—coupled to
the average local slope of hi. It was neglected that the
walker is not only influenced by the gradient of the
landscape, but also by its roughness. As shown in [13],
this is not justified. Random walkers in rough landscapes
are hindered by obstacles [15], so roughness tends to make
them move more slowly. The improved RG scheme
proposed in [13] was later criticized by [14], whose authors
pointed out that one has in general to consider even more
couplings (beyond slope and roughness), which makes the
problem nonrenormalizable. In [16] we argue that α ¼ 1=2.
Apart from these formal problems, the schemeproposed in

[13] is also sick for a very basic reason. In a RG treatment
of TSAWs, one has to consider not only the RG flow, but
also the flow of time. Indeed, TSAWs are not stationary, and
they are not even time reversal invariant [16]. As the
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landscape grows, its effect on the walker becomes stronger
and stronger.
To see this more quantitatively, let us consider TSAWs

on a large but finite lattice of size L × L. For convenience
we take a square lattice with periodic (or, for easier coding,
helical; the difference between them is negligible for the
lattice sizes considered here) boundary conditions. The
walker starts on a flat landscape hi ¼ 0. If there were no
self-repulsion (i.e., β ¼ 0), the lattice would be covered
after a time Tcover ∼ ð4=πÞL2ðlnLÞ2 [17,18]. After that, the
average height still grows linearly with time, but its
roughness also grows without limits [19]. The variance
of the height profile,

σðTÞ ¼ L−2
X

i

h2i − T2; ð1Þ

increases proportionally to T, and [19]

σðTÞ=T ¼ 4

π
lnLþOð1Þ for L → ∞: ð2Þ

For nonzero β, in contrast, it was conjectured [7] that

Tcover ∼ aTðβÞL2 lnL: ð3Þ

For β ¼ ∞ this is indeed shown in Fig. 1, but completely
analogous results were obtained also for finite β. The
prefactor aTðβÞ diverges of course for β → 0.
For the height variance for T ≫ Tcover, the effect of self-

repulsion is even stronger. This time the variance stays
finite for T → ∞, with [19]

σðTÞ ∼ aσðβÞ lnL; ð4Þ

see also Fig. 1 for β ¼ ∞. Again the prefactor aσðβÞ
diverges as β → 0. From plots analogous to Fig. 1 (but for
other values of β) we obtain

aσðβÞ≃ 0.317ð4Þ=β ð5Þ

for β → 0. We checked that Eqs. (4) and (5) also hold for
variances in square subregions of size L × L in a larger
lattice of size bL × bL, provided T is rescaled to b2T. This
suggests that they also describe the local statistics for
infinite lattices.
In the RG treatment in [13,14] it was assumed that one

can start perturbatively around the point where both
coupling constants (that for the slope and that for the
roughness) are small. But as we have just seen, when the
coupling to the slope is small, the roughness increases for
late times beyond any limit. Thus a perturbative treatment
in the combined effects of roughness and slope becomes
impossible.
In order to avoid this problem, one can change the model

so that the landscape becomes less rough. One possibility
would be to let the debris diffuse. This could be presumably
efficient, but it is rather awkward (and slow, from a
numerical point of view) to implement—and it is very
likely that it will lead to problems similar to those discussed
below. The following change seems much easier: Instead of
dropping all debris onto the site of the walker, only a
fraction 1 − ϵ is dropped there. The rest is distributed
uniformly among all of its neighbors.
As seen from Fig. 2 for β ¼ ∞, this seems indeed to

work—at least on the square lattice and for ϵ ¼ ϵc ¼ 1=2.
The variance increases still roughly according to Eq. (4),
but the prefactor, called now aσðβ; ϵÞ, is ≲0.05. Indeed,
Fig. 2 does not show aσðβ; ϵÞ or σðTÞ, but rather
σðTÞ − aσðβ ¼ ∞; ϵÞ lnL. For reasons that are not fully
understood, σðTÞ does not increase monotonically. This
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FIG. 1. Log-linear plots of statistics of TSAWs with β ¼ ∞ on
square lattices of size L × L with helical boundary conditions.
The upper curve (open squares and left-hand y axis) shows the
average cover times, divided by L2. The lower curve (filled
squares and right-hand y axis) shows the asymptotic height
variances of the debris field. In both cases, error bars are much
smaller than symbol sizes.

FIG. 2. Plot of σðTÞ − aσðβ ¼ ∞; ϵÞ lnL against the average
debris height hhi, for ϵ ¼ 1=2. According to Eq. (4), these curves
should all approach the same horizontal line for T → ∞. The fact
that they do this very slowly and in a nonmonotonic way seems to
be a peculiarity of the β ¼ ∞ limit on the square lattice. It is
neither seen for finite β nor on the triangular lattice.
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anomaly seems to be related to the fact that walks have
strongly reduced randomness for β ¼ ∞. It is even
enhanced for ϵ < ϵc [16]. For finite β this anomaly is
absent, and the asymptotic value of σðTÞ is reached
monotonically. The latter is true also for the triangular
lattice (with ϵc ¼ 2=3), and if debris on the square lattice is
dropped not only onto the four nearest neighbors, but also
(with the same amounts) onto the four next-nearest neigh-
bors. In the last case we also found ϵc ¼ 2=3 [16]. We have
found no mathematical argument as to why these numbers
are simple rationals.
For ϵ > ϵc things change, however, completely. As seen

in Fig. 3, σðTÞ first approaches rapidly a constant, but
finally increases beyond limit as T → ∞. The data in Fig. 3
are for the square lattice with L ¼ 512 and β ¼ ∞, but
similar results were seen also in all other cases. In
particular, nearly identical plots are obtained for L ¼
256 and L ¼ 1024, the only difference being tiny shifts
compensating the height differences of the curves before
they start to rise. This means that the rise of σðTÞ starts at a
fixed debris height, not at a fixed time. This implies also
that the same rise should also be seen on an infinite lattice,
because debris height increases also there with time. Since
this increase is only logarithmic on an infinite lattice, the
transition happens there at astronomically large times,
making it de facto unobservable.
Roughly, the characteristic densities h� in Fig. 3 (at which

roughness starts to increase) scale as h� ∼ ðϵ − 1=2Þ−2, but
deviations from this are huge. The reason is most likely the
same as that for the nonmonotonicity in Fig. 2. Much more
regular behavior is found for finite β and on the triangular
lattice. Results for β ¼ 1 on the square lattice are shown in
Fig. 4. In panel (a) we show σ versus hhi, while the data are
plotted against ðϵ − 1=2Þ2.27hhi in panel (b). The latter
suggests strongly that (i) ϵc ¼ 1=2 is exact, (ii) the character-
istic height scales as h� ¼ c=ðϵ − 1=2Þγ with c ¼ 0.80ð5Þ

and γ ¼ 2.27ð2Þ, and (iii) at h ¼ h�, the rise of σ against
ðϵ − 1=2Þγh becomes infinitely steep for ϵ → 1=2.
Basically the same results were found also for β ¼ 0.2

and β ¼ 5.0. In particular, also there ϵc seems to be exactly
1=2 and the same scaling seems to hold for h�, with c ¼
4.3ð5Þ for β ¼ 0.2 and c ¼ 0.26ð3Þ for β ¼ 5.0. The values
for the exponent γ are 2.24(3) and 2.26(3).
This suggests that γ is universal, but this is shattered by

the results for the triangular lattice. There, ϵc ¼ 2=3 (again
for all values of β), but plots analogous to Fig. 4(b) for
β ¼ ∞ [see Fig. 5(a)] and β ¼ 1 [see Fig. 5(b)] indicate that
γ ≈ 1 in both cases More precisely, for β ¼ ∞ we obtained
γ ¼ 1.00ð2Þ, while γ ≤ 1.17 for β ¼ 1 (a more precise
estimate for the latter is prevented by large corrections to
scaling). Finally, we simulated also walks on the square
lattice where the four next-nearest neighbors received the
same amount of debris as the four nearest neighbors. The
data [16] gave again ϵc ¼ 2=3 for all β and γ ¼ 1.00ð1Þ for
β ¼ ∞, while the estimate γ ≤ 1.15 for β ¼ 1 is again
affected by large corrections to scaling. In summary, it
seems that there are at least two distinct universality
classes, one with γ ≈ 1, and the other with γ ≈ 2. Within
each class, there are still minor but statistically significant
differences. The origin of this is not clear.
For h > h�, walks are subdiffusive and get more and

more so as h increases further. Let us define the average
squared end-to-end distance of the last T steps of a walk of

FIG. 3. Log-log plot of σðTÞ against the average debris height
hhi, for square lattices with L ¼ 512. Each curve corresponds to a
different value of ϵ. They are roughly horizontal up to a
characteristic debris height h� that increases roughly as an
inverse power of ϵ ¼ 1=2, but deviations from such a power
law are much larger than statistical errors.

FIG. 4. (a) Plot of σðTÞ against hhi, but for β ¼ 1.0. (b) Same
data, but plotted against ðϵ − 1=2Þ2.27hhi.
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total length t, averaged over t ∈ ½ta; tb�, as hR2ðTÞi½ta;tb�. In
Fig. 6 are plotted T−1hR2ðTÞi½ti;tiþ1� for tiþ1 ¼ 2ti þ 4L2,
with t0 ¼ 0; 0 ≤ i < 10, and L ¼ 16384. We see that the
walks are stretched for all T for i ¼ 0, 1, and remain
stretched for large T even when i ¼ 2 or 3. But for larger i
we see R2 < T, mainly because the walks are strongly
compressed for very small T.

Thus, most of the time the walks are confined to narrow
regions for short intervals whose length increases with i,
while the evolution on larger time scales is characterized by
escape from these regions. Obviously, a typical walk stays
for some time trapped in a region where h was originally
lower than average. As time goes on, it fills up the debris in
this region, but it also builds a wall around it. When finally
h is so large that the walk escapes, it has built such a high
wall that it gets trapped even longer in a neighboring region
etc. This scenario is supported by the entropy of the walks,
which is just equal to the entropy provided by the random
number generator. Entropies decrease fast (roughly expo-
nentially) with hhi [16], implying that for large times the
walk is hardly random at all.
We have seen that self-repelling walks become self-

trapping when the debris height increases above a critical
height, if sufficiently much of the debris is placed on
neighboring sites. The critical height depends on this
amount and on the type of lattice, but it is independent
of the size of the lattice. Since the average debris height
increases also for infinite lattices, this transition should be
also seen there. Since this increase is however very slow
(∼ lnT), the self-trapping transition on infinite lattices
should be seen only at extremely large times, much larger
than what is reachable with present-day computers.
Therefore, also lattice covering times should not, at
presently reachable values of L, be affected by self-
trapping, unless ϵ is extremely large. For the square lattice
with ϵ ¼ 0.8, e.g., we found that Eq. (3) holds for β ¼ ∞
with σTð∞Þ ¼ 0.024ð2Þ. Thus walks with large ϵ should be
optimal for disseminating or collecting information on
large systems (notice that our results should also apply
on geometric random graphs [7]). Even faster could be
walks where also next-nearest neighbors of visited sites are
marked, but then the increased efficiency in terms of
number of steps should be balanced against increased
effort in marking these sites.

I am indebted to Gerhard Gompper, Dmitry Fedosov, and
Sandipan Mohanty for most useful discussions.
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