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Universality and asymptotic scaling in drilling percolation
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We present simulations of a three-dimensional percolation model studied recently by K. J. Schrenk et al.
[Phys. Rev. Lett. 116, 055701 (2016)], obtained with a new and more efficient algorithm. They confirm most of
their results in spite of larger systems and higher statistics used in the present Rapid Communication, but we
also find indications that the results do not yet represent the true asymptotic behavior. The model is obtained by
replacing the isotropic holes in ordinary Bernoulli percolation by randomly placed and oriented cylinders, with
the constraint that the cylinders are parallel to one of the three coordinate axes. We also speculate on possible
generalizations.

DOI: 10.1103/PhysRevE.95.010103

In spite of its mature age, the theory of percolation is still full
of surprises [1]. A new page was turned recently by Schrenk
et al. [2], who revisited a model that was first studied long
ago by Kantor [3]. While Kantor had concluded that it was
in the universality class of ordinary three-dimensional (3D)
percolation, the simulations in [2] clearly suggest that it is
in a different universality class. But these simulations also
indicate very large corrections to scaling. Since the simulations
were done on systems with rather modest sizes and did not
use extremely large statistics, we decided to perform larger
simulations in order to check their claims. The result can
be summarized easily: Although our estimates of critical
parameters are significantly more precise than those of [2]
(and of course also of [3]), we fully confirm their main results.
But we also find indications that these might not represent
the true asymptotic behavior, which then would be even more
different from ordinary percolation.

The model studied in [2,3], called “drilling percolation” in
the following, is very simple. Take a large solid block of size
L × L × L with L � 1 on a simple cubic lattice, and remove
randomly columns of size 1 × 1 × L, located randomly in the
cube and oriented randomly but aligned with one of the three
axes. The maximal number of columns is 3 × L × L (each
column of fixed orientation can be in one of L × L positions,
and there are three orientations). The control parameter is
defined as

p = number of columns not taken out

3L2
. (1)

Notice that this is not the fraction of retained sites, since
one site can be in two or even three columns. Nevertheless,
we expect qualitatively the same behavior as for ordinary
site (“Bernoulli”) percolation: While the nonremoved parts
percolate for p = 1, they cannot percolate for p = 0, and there
must be a critical point pc in between.

The nontrivial aspect of the model is that it involves
geometric objects of more than one nontrivial dimensionality.
While the bulk is three dimensional, the columns (holes)
have d = 1. Thus we expect that the standard field theory for
percolation [4] cannot be applied without modifications. It is
in this respect similar to models with long range correlations in
the disorder [5], of which it is indeed a special and particularly
simple case.

The simulations were done in [2] by means of two different
algorithms, both of which seem, however, to be less than
optimal. In the present Rapid Communication we shall use
instead a very simple and efficient generalization of the well
known Leath algorithm [6] for site percolation.

The latter is a cluster growth algorithm that uses two data
structures: (i) a bit map, where for each site (i,j,k) of the
lattice it is stored whether it had been tested (sijk = 1) or not
yet (sijk = 0); and (ii) a queue or stack (depending on whether
it is implemented breadth first or depth first [7]) that contains a
list of “growth sites,” i.e., sites that had recently been “wetted”
(i.e., included in the cluster) and whose neighbors have to be
tested whether they can be wetted or not. Notice that the bit
map s does not need to distinguish for tested sites whether
the test had been positive (i.e., they were wetted) or not, as
no site can be wetted later, if the first test was negative (this
distinguishes site from bond percolation). Time in this growth
process is discrete. The difference between the times when a
site gets wetted and wets itself its neighbors is defined as one
unit of time.

In our generalization we have to add three more arrays Xjk ,
Yik , and Zij of sizes L × L each, the elements of which can
assume three possible values. Xjk = 0, e.g., means that it is not
yet known whether the column parallel to the x axis at position
(y = j, z = k) has been removed, Xjk = 1 means that it has
been removed, and Xjk = 2 means that we know that it has
not been removed (e.g., since some site in it has been wetted
already). Thus at the beginning, all array elements are zero,
except for the “seed” (0,0,0) where the growth starts (implying
s000 = 1, X00 = Y00 = Z00 = 2). Assume now a site (i,j,k) is
neighbor to a growth site, and is thus to be tested. If it had
been tested already before, it has sijk = 1 and nothing is done.
Otherwise, if sijk = 0, we test for all three directions whether
the column passing through it is already known to be removed
or not. If this is not yet known, it is removed with probability
1 − p (respectively, kept with probability p), and the array
element is put to 1 (respectively, 2). After this, we wet the site
if and only if Xjk = Yik = Zij = 2, i.e., if and only if none of
the three columns has been removed.

In a first set of runs we started with a point seed on lattices
with L = 211, followed the cluster growth in a breadth first
manner as long as the spans in all three directions were <L,
and recorded the three time-dependent observables P (t),R(t),
and N (t). These are the probability that the cluster grows for a
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time � t (i.e., its “chemical radius” is � t), the rms distance of
growth sites at time � t from the seed, and the average number
of growth sites (averaged over all clusters, those that are still
growing and those that had already died). At the critical point
p = pc we expect them to follow power laws

P (t) ∼ t−δ, R(t) ∼ t z, and N (t) ∼ tη (2)

with finite-t corrections, but without any finite-L corrections.
In a second set of runs we used lattices with helical

boundary conditions (BCs) and followed the cluster growth
until it stopped because all wettable sites were already wetted,
and measured properties such as the cluster mass distribution
p(m), the dependence of the average cluster mass on L, and
the density of the giant cluster (which is also the probability
that a spreading from a single-site seed leads to a giant
cluster).

Finally, in a third set of runs we used lattices of size
L × L × Lz with Lz � L. Initial conditions did not consist
of single “wet” (or infected, in the interpretation of epidemic
growth) points, but the entire plane z = 0 was wet, and the
spreading was allowed only into the region z > 0. Lateral
boundary conditions were either periodic or open, but the
BC at z = Lz was not specified because it was checked that
all clusters stopped growing for z < Lz. This was feasible,
because these simulations were only done in the subcritical
phase p < pc. In this way we could measure spanning
probabilities: On a given disorder realization and for any
zmax � Lz, there exists a cluster that spans from z = 0 to
z = zmax, if and only if the growth stops at z = zmax.

Results of the first (time-dependent, or “dynamical”) set of
measurements are shown in Fig. 1. None of the curves in any of
the three panels is really a straight line, indicating substantial
corrections to scaling. In spite of this, one can identify a value
pc ≈ 0.633 97 where the curves in all three panels seem to
become straight and horizontal for large t . This gives us a
first rough set of exponent estimates, δ = 0.361, η = 0.56,

and z = 0.765. We have not yet given error estimates, since
we have two more sources of information: The finite lattice
simulations for t → ∞ and, more importantly, the fan-outs of
the curves in Fig. 1. The latter gives us an independent estimate
of the correlation length exponent ν. More precisely, we have
finite-t scaling laws such as

P (t,p) = t−δφ[(p − pc)t1/νt ] + · · · , (3)

and similar equations for N and R. Here φ[x] is a scaling
function that is analytic at x = 0, and νt = ν/z.

We checked Eq. (3) (and analogous Ansätze for the
other observables) by plotting t δP (t,p) against (p − pc)t1/νt .
Parameters pc and νt were chosen to obtain the best data
collapse. In view of the strong corrections to scaling seen
already in Fig. 1, we cannot indeed expect a perfect collapse,
but we shall try to get a good collapse for large t . Results
of such an attempt, this time not for P but for the number
N/P of growth sites per still growing cluster, are shown in
Fig. 2. This time we used a much wider range of p values,
p ∈ [0.623,0.651]. In this wide range φ would take a vast
range of values, making a collapse plot look excellent but
virtually useless. In order to increase significance, we have
divided φ[x] by exp(2.1x). We see excellent collapse in the
wings in Fig. 2, but huge deviations at x ≈ 0 which precisely
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FIG. 1. Top to bottom panels: Log-log plots of survival probabil-
ity P (t), average number of growth sites N (t), and rms distance of
growth sites from the seed, all plotted against time t . Each curve is
for one fixed value of p, with p decreasing from top to bottom. For
more significance, a power of t with suitable exponent is multiplied
to each curve, so that the critical curves are roughly horizontal.

result from the small-t corrections seen also in Fig. 1. Notice
that we also slightly changed the exponent from the above
estimate, in order to optimize the data collapse.

Having obtained in this way νt ≈ 1.404, we can now also
estimate other exponents such as ν = zνt and β = δνt .
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FIG. 2. Plot of t−0.928N (t)/P (t) exp(−2.1x) against x = (p −
pc)t1/νt , where pc is the value estimated above, and νt = 0.712. The
factor exp(−2.1x) was divided out in order to reduce the range on
the y axis from about three decades to half a decade. The values of p

used in this plot ranged from 0.623 to 0.651.

For the second set of runs we used lattice sizes ranging
from 323 to 20483. We do not show any results, as they
were fully compatible with the dynamical simulations but
proved to be less significant. In any case, we verified that
the fractal dimension Df (governing the cutoff of the mass
distribution) and the exponents τ (describing its power law
decay) are obtained in perfect agreement with the scaling
relations Df = 3 − β/ν and τ = d/Df + 1.

As a final result we obtain pc = 0.633 965(15) and
the mutually consistent set of exponents δ = 0.364(3), η =
0.560(8), z = 0.765(3), νt = 1.404(5), ν = 1.074(5), β =
0.511(5),Df = 2.524(8),τ = 2.189(5). As for any critical
exponent estimates, the errors here are not statistical but are
mainly systematic errors due to uncertainties in the finite size
corrections. Since critical exponent estimation involves an
extrapolation (which by its nature is ill defined), the results
are highly subjective and result from judicious plausibility
considerations taking into account all measured observables.
Notice, in particular, that least square fits would not be
appropriate, and are the main source of the many wrong critical
exponent estimates found in the literature. While pc is more
precise than the value quoted in [2] by a factor ≈25, the critical
exponents are typically more precise by factors 2–5. But in all
cases the agreement is within two standard deviations.

Let us finally discuss the spanning probabilities resulting in
the subcritical phase from the third set of runs. Let us denote
by �(p,r,Lz) the probability that there exists a spanning
cluster (from z = 0 to z = Lz) on a lattice with aspect ratio
r = Lz/L, and for given p value p. In [2] it was proven
mathematically that �(p,r,Lz) decreases with Lz, for any
fixed r and for fixed p ∈ [0.529 74, . . . ,pc], not faster than
a power. This is in striking contrast to ordinary percolation,
where �(p,r,Lz) decreases exponentially. A closer inspection
of the proof reveals that the problem is similar to that of
Griffiths phases [8–11], where frozen disorder leads to slow
decay of correlations in time. Here we are not dealing with
disorder frozen in time, but with disorder (the columns drilled
parallel to the z axis) that is frozen in the z direction. As a
consequence we should observe correlations decreasing very
slowly in the z direction.

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 1  10  100  1000

open lateral b.c.

r = 6

r = 1

r = 2

r = 4

p = 0.630;sp
an

ni
ng

 p
ro

b.

Lz

FIG. 3. Log-log plot of spanning probabilities �(p =
0.630,r,Lz) against Lz, for fixed values of the aspect ratio r .

In Fig. 3 we show results for lattices with open lateral BCs
and p = 0.630. This should be compared to Fig. 4 in [2],
where the same boundary conditions and the same value of
p were used, but which extend only to much smaller values
of Lz. Due to this much smaller range of Lz, the authors
of [2] claimed to see a power law and thus to confirm the
mathematical prediction. We now see that this was not true.
Although we cannot of course exclude an asymptotic power
law, it should set in only at much larger values of Lz, in
particular for small values of r . Simulations with different
values of p and with periodic BCs, not shown here, fully
confirm this.

Figure 3 suggests that presently reachable lattice sizes are
not able to show the true asymptotic behavior. This is also
suggested by distributions of cluster sizes and of spherical
asymmetries as measured by averages of x2y2z2 − (x6 + y6 +
z6)/60, of critical and subcritical clusters grown from point
seeds. They also should have power-behaved tails [2]. We
indeed found that subcritical cluster size distributions showed
some deviations from exponential decay (data not shown here),
and that average asymmetries were significantly different from
zero (see Fig. 4). But both were much smaller than what
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1/60 for isotropic clusters. More precisely, the data use moments of
the growth site coordinates at time t , in clusters grown from a single
point seed. Values of p decrease from top to bottom.
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one would expect if the distributions were decaying like
powers. Thus we conclude that the above results for the critical
exponents might also not yet represent the true asymptotic
behavior—which should be visible only for cluster and lattice
sizes not reachable with present computational means. The
total amount of CPU time (on PCs and laptops) spent on this
project was about a year.

In summary, we have verified that drilling percolation is in
a new universality class, different from ordinary (Bernoulli)
percolation, but the true asymptotic behavior might still be
different from what is seen in [2] and in the present simulations.
Let us finally discuss some possible generalizations.

The most obvious generalization is mixed drilling or
Bernoulli percolation, where we take out both single sites
and columns. We conjecture that in this case the long range
aspect of the columns is relevant, and the model should be in
the universality class of drilling percolation.

Next, we can consider the case where linear objects are
again taken out, but they are oriented randomly, without any
reference to coordinate axes [12]. This seems to be more
delicate. It is plausible that it is not in the universality class of
ordinary percolation, but it might be in a universality class of
its own. The same might be true for the case in which there is

a finite number >3 of possible orientations, e.g., coordinate
axes and space diagonals. While the present algorithm would
not work for completely random orientations, it could still be
generalized to include diagonals.

More interesting from a theoretical point of view are higher
dimensions, d � 4. For space dimension d we can “drill” out
subspaces of dimensions � d − 2 and still have a nontrivial
connectedness problem. For d = 4, e.g., taking out columns
and planes would still give nontrivial percolation problems.
We conjecture that these are in different universality classes.
As one goes to higher and higher dimensions, one expects
then a proliferation of universality classes. It seems, however,
nontrivial to check this by simulations, and it is not clear how
to treat them analytically.

Finally, we shall study in a forthcoming paper [13] a 3D
model with columnar defects in one direction only and with
additional point (Bernoulli) defects. This model shows a much
clearer Griffiths phase, and much stronger anisotropies even
at the critical point.
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I also thank N. Araújo for carefully reading the manuscript.
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